近年來,受到物聯網和人工智慧技術高度發展影響,大數據的重要性逐漸提昇。為避免資料不當收集和資料被不當佔據等可能妨礙競爭之行為,以利業者透過資料收集、累積和分析等方式,創造出新的產業價值,日本公平交易委員會於競爭政策研究中心設置「資料與競爭政策檢討會」,自2017年1月至6月間舉辦數次檢討會,並於2017年6月6日公布《資料與競爭政策檢討會報告書》。該書一共5章,內容為第1章檢討背景,第2章回顧資料環境變化與利用現狀,第3章檢討現今競爭政策及《獨占禁止法》,第4章資料收集、利用相關行為,以及第5章企業結合審查等與資料利用相關之事項。
報告書指出,業者不當收集資料和不當佔據資料等行為,均有適用《獨占禁止法》之可能。前者係指具有優勢地位的業者,利用關係要求有業務往來的企業提供資料等行為,如原本只需要性別和年齡資訊,卻額外要求對方提供住所、電話等訊息;後者則係指業者利用不正當方法與顧客聯繫,排除其他競爭者等行為,如排他性交易、拒絕交易、差別待遇等。
本文為「經濟部產業技術司科技專案成果」
色情光碟在澳洲高中校園內的網路流傳,且以一片美金五元的價格販售,其光碟的內容有女性被性虐待的畫面,例如撒尿在女生身上,或燒女生頭髮等。澳洲警方警告,任何學生觀看或下載這些色情影片將處以罰款。 維多利亞警局資深警官麥可‧亨瑞表示,「罰款並不能阻止這些色情的影片。」色情犯罪偵查小組為了調查色情光碟在校園流竄的問題,整夜和這些青少年進行面談,以了解色情光碟對他們的影響。麥可說:「這些色情光碟影響青少年對於性的想法,而且現在並沒有任何人因為此事被罰款,即使要罰款,也要有證據來界定罰款的金額。」 澳洲法院總理約翰‧南斯說道:「販賣或製造這些色情光碟是一種可怕且無恥的行為,但我們不能因為我們的感受而以刑罰作為報復的工具,因為這些青少年年紀尚輕,而且有些人是因為同儕的壓力而犯罪的,我們應該試著體諒並且確定他們的人生不會因此次事件而留下不可抹滅的印記。」 因為即使以法律對販賣或製造色情光碟的青少年施以懲罰,在他們人生的紀錄中留下一個可恥的印記,但這些懲罰對於改善他們的未來,並沒有任何助益。
員工分紅列費用之會計處理 金管會擬自民國97年起適用新修正商業會計法第 64 條規定,商業對業主分配之盈餘,不得作為費用或損失。但具負債性質之特別股,其股利應認列為費用。本條但書即是企業對於員工分紅應與以費用化之法源。配合此一新修正規定,金管會前已邀集業界及產業公會、四大會計師事務所與相關政府單位等,針對員工分紅費用化相關問題共同討論以研擬員工分紅費用化之相關會計處理及配套措施。 金管會及有關單位研討後決定, 在會計處理方面,企業應於期中報表依章程所訂之比率,預估員工分紅及董監酬勞金額入帳。期後董事會決議發放金額有重大變動時,該變動應調整當年度(原認列員工紅利之年度)之費用。至於次年度股東會決議若有變動,則依會計估計變動處理,列為次年度損益。 至於員工分紅配發股數之計算基礎以公平價值評價,上市上櫃公司應以股東會開會前一日之公平市價(考慮除權及除息之影響)計算股票紅利股數;興櫃公司及未上市上櫃之公開發行公司則應以股東會前最近期經會計師查核簽證之財務報告淨值計算股票紅利股數。企業發行員工認股權憑證及買回庫藏股轉讓予員工,應以公平價值法認列為費用。 以上決議將自 民國九十七年一月一日 起的財務報表開始適用。 由於員工分紅費用化,對一向以股票分紅作為獎勵員工的科技產業,可能造成不小的衝擊,因此,金管會也提出「員工認股權憑證制度」及「庫藏股票制度」的配套措施,並將修正「發行人募集與發行有價證券處理準則」與「上市上櫃公司買回本公司股份辦法」。金管會表示,有關本案規劃措施及實施日期,將由經濟部彙整各部會意見,提報行政院,相關措施將配合實施日程發布。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
時尚奢華品牌-Gucci與服飾品牌-Guess間之商標戰爭Gucci America, Inc. (Gucci) 於2009年對Guess?, Inc. (Guess)提出商標侵權訴訟,美國聯邦地方法院(United States District Court, SDNY)於2012年5月在無陪審團審判的結果下,判定Guess禁止使用「紅-綠條紋」、「G字菱形圖」、及「環環相扣的G圖」等三項商標,並須賠償Gucci 466萬美元之損害賠償。 緣,Gucci聲明Guess係惡意侵害及仿冒Gucci的商標設計,企圖造成消費者的混淆誤認,並淡化Gucci的商標權,故針對「紅-綠條紋」、「G字菱形」、「環環相扣的G圖形」、及「手寫Guess logo」等商標設計聲明其禁止銷售、販賣及使用,並主張因Guess的惡意仿冒,請求1.2億美元的損害賠償。 Guess於訴訟過程中提出抗辯,(1) Guess無理由仿冒Gucci的商標、 (2) Gucci至少超過七年以上放任Guess使用其所聲稱的Gucci商標設計且未提出訴訟;此外,(3) 消費者並不會將Guess的產品與Gucci的產品誤認,因Guess與Gucci所訴求的客戶市場並不相同。 Scheindlin法官於裁定書中敘明,Gucci無法直接證明因Guess之商標侵害造成其品牌上的極大損害,故最終損害賠償金額僅判定466萬美元 。 本案之法院結果將影響其他時尚品牌之商標或產品外觀近似的侵權案件。