運輸公司Uber在其行動應用程式(app)中使用的移動定位技術被控侵權。原告Fall Line專利有限公司於今(2017)年7月10日美國東德州聯邦地方法院泰勒分院向Uber提起專利侵權訴訟。系爭美國專利號9,454,748(以下簡稱’748專利)的權利範圍涵蓋一種收集特定定位資料及相容於各種裝置的軟體,從而不需要再為了各種裝置重新設計新軟體。
Fall Line專利有限公司在訴狀中聲稱:「Fall Line專利有限公司是’748專利的專利權人,擁有所有實體權利。實體權利包括獨佔權及排他權,故Fall Line專利有限公司得以’748專利主張權利、對抗侵權者,對Uber的侵權行為提起訴訟。」Fall Line專利有限公司控訴Uber的行動應用程式可協助使用者以智慧型手機叫車,前往他們所在位置,侵害其’748專利。Uber的侵權行為已經造成Fall Line專利有限公司的損害,應對Fall Line專利有限公司給予適當補償,且補償金額不得低於合理權利金,及法院判決確定的利息及費用,另亦請求禁制令及陪審團審理。
此外,根據一項美國地方法院資料庫的檢索結果顯示,Fall Line專利有限公司今年到目前為止已經提起五件專利侵權訴訟,其中包括對精品國際酒店集團(Choice International Hotel)的控訴,而本案已是Uber今年第三起被控專利侵權的案件。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。
美國食品藥物管理局發布《上市後研究及臨床試驗:判定未遵守聯邦食品、藥品和化妝品法案第505(o)(3)(E)(ii)節的正當理由》指引草案美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)於2023年7月14日發布《上市後研究及臨床試驗:判定未遵守聯邦食品、藥品和化妝品法案第505(o)(3)(E)(ii)節的正當理由》(Postmarketing Studies and Clinical Trials: Determining Good Cause for Noncompliance with Section 505(o)(3)(E)(ii) of the Federal Food, Drug, and Cosmetic Act)指引草案,說明FDA如何判定處方藥廠商未遵守上市後要求(Postmarketing Requirements, PMRs)的正當理由。 根據聯邦食品、藥品和化妝品法案(Federal Food, Drug, and Cosmetic Act, FD&C Act)第505(o)(3)節,應完成PMR的廠商必須向FDA更新研究或臨床試驗進度的狀態及時間表,例如:提交最終版本計畫書、完成研究/臨床試驗、提交結案報告。廠商若未向FDA更新上述PMR資訊即違反FD&C Act,除非廠商提出正當理由。 未遵守PMR的正當理由應符合下列三項條件: 一、與錯失時程直接相關的情況。 二、超出廠商的控制範圍。 三、當初制定時間表時無法合理預期的情況。 該指引草案舉例說明可能的正當理由及非正當理由,另建議廠商提交年度報告前主動通報PMR進度的狀態,並在預期錯過時程之前儘快提供理由,亦須採取矯正PMR不合規行為的措施,包括立即制定矯正計畫、主動向FDA通報實際或預期的延誤,以及修訂合理的時間表。未遵守PMR的廠商可能會收到FDA的警告信(Warning Letter)或無標題信(Untitled Letter)、不當標示指控(Misbranding Charges)和民事罰款,FDA將根據廠商是否採取矯正措施來確定罰金。 「本文同步刊載於 stli生醫未來式 網站(https://www.biotechlaw.org.tw)」
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
澳洲法院認為新聞標題不受著作權法保護FairFax媒體出版公司是澳洲財經評論(Australian Financial Review,以下簡稱AFR)報紙的出版商,控告Lexis Nexis資料庫所提供的ABIX服務,提供不同的來源的每日新聞標題和摘要,包括AFR的新聞),是侵害FairFax新聞標題的著作權,同時,FairFax要求Lexis Nexis停止使用這些文字。 澳洲聯邦法院認為:1.著作權法不保護新聞標題,因為新聞標題太過簡短;2.證據顯示新聞標題並不能做為共同著作的一部分;3.新聞標題非整篇新聞最實質的部份。4.因為LexisNexis所使用的新聞標題可以構成合理使用。澳洲著作權法中,依據使用的性質與目的若使用新聞報導內容,是可以作為合理使用的主張。也就是說即使新聞標題受到著作權法保護,但LexisNexis仍可以主張合理使用,不會有侵害著作權的疑慮。 法官Annabelle Bennet表示:「新聞標題普遍來說就如同書名,太簡單且太短是不能受到著作權法中的語文著作保護。新聞標題的功能像是一篇文章的篇名,也像針對主題用濃縮的方式簡短的敘述,就如同像是一本書的書名長度。普遍來說,新聞標題太過簡短以致於不能被認為是語文著作,就像是標識(LOGO)在著作權法的評價上不夠重要以致於不能作為美術著作,即使這些是花費技能和勞力所創造的。