歐盟和德國對於自動駕駛及智慧交通系統之個人資料保護發展

刊登期別
第29卷第09期,2017年09月
 
隸屬計畫成果
經濟部技術處科技專案研發成果
 

本文為「經濟部產業技術司科技專案成果」

※ 歐盟和德國對於自動駕駛及智慧交通系統之個人資料保護發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7875&no=55&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
美國白宮發布《晶片與科學法》實施一周年總結

美國白宮(The White House,以下簡稱白宮)於2023年8月9日發布《晶片與科學法》(CHIPS and Science Act,以下簡稱晶片法)頒布一周年之總結,說明相關補助及租稅優惠措施之實施成效。自晶片法施行以來,已吸引高達1,660億美元之私人投資,並有50所以上大學宣布將開設半導體人力培訓課程,顯示晶片法對半導體生產製造在地化已有相當成效。晶片法施行後推動之措施如下: 1.說明半導體補助申請流程及條件 美國國家標準及技術研究院(National Institute of Standards and Technology)於2023年2月28日分別發布「半導體製造補助之申請指引」(Funding Opportunit–Commercial Fabrication Facilities)與「半導體製造補助願景」(Vision for Success: Commercial Fabrication Facilities),說明晶片法補助目的、申請流程、條件以及注意事項,並於同年6月23日更新相關內容。 2.說明柵欄條款之運作方式 美國商務部(Department of Commerce)與財政部(Department of Treasury)2023年3月23日於美國聯邦公報(Federal Register)發布法規預告(proposed rules),詳細說明晶片法內柵欄條款(guardrails)之運作方式。根據法規預告之內容,受補助人於受補助後的10年內若未經美國商務部與財政部同意,不得於中國等特定國家進行半導體製造設施「實質擴廠」之「重大交易」,避免受補助人將晶片法提供之補助用於中國,進而侵害美國國家安全。 3.強化半導體研發創新 美國商務部於2022年9月6日發布「美國晶片補助戰略」(A Strategy for the CHIPS for America Fund),說明商務部將與國家科學基金會(National Science Foundation)等建立「國家半導體科技中心與執行國家先進封裝製造計畫」(National Advanced Packaging Manufacturing Program),協助美國維持半導體研發之領先地位,並大幅縮短研發成果商用化之時程。 4.保障區域經濟發展與創新 美國商務部於2023年5月發布第1期「科技中心計畫」(Tech Hubs Program)申請指引,協助區域製造、商業化和部署關鍵技術;並於2023年6月發布第1期「重新競爭領航計畫」(Recompete Pilot Porgram),為長期處於經濟困境的美國社區提供就業機會。

美國音樂授權制度邁向新里程碑:集體授權組織MLC將於後年正式運行!

  美國「音樂現代化法案」(Music Modernization Act,簡稱 MMA) 於2018年10月由總統川普簽署成為有效法律之後,於今年(2019)9月17日正式對外發布消息,其依照MMA之規定,美國著作權局已於今年7月8日指定由「美國音樂發行協會」(National Music Publishers Association,簡稱NMPA)成立「機械式集體授權組織」(The Mechanical Licensing Collective,簡稱MLC)。NMPA係全美音樂發行商之貿易協會,早於1917年運行至今,現被指定成立MLC,擬於2021年1月正式開始進行全美音樂之「概括授權」(blanket license),並維運前所未有的「透明化資料庫」,期能對接音樂串流平台,促使音樂作品比對相關著作權之權利人,藉以有效率且準確地支付相關授權金給詞曲創作人和發行人,且串流平台業者只要確實遵守MMA之概括授權與MLC之運作方式,即免於侵權責任MLC之組織體編制與人員名單資訊,亦透明地揭示於官網,其設有MLC董事會(由BMG、SONY、華納音樂等背景之人員擔任),以及「無人認領授權金監督委員會」、「爭端解決委員會」、「營運顧問委員會」等三個委員會,各委員均由音樂著作權人或詞曲創作等人擔任。   MMA立法之初,試圖創設一全新、單一窗口非營利組織,並建置符合現代科技的數位資料庫,來解決音樂授權的痛點。而今MLC即將於後年1月正式運行,在數位時代借力科技,帶領音樂授權邁向新里程碑!

因應綠色採購 環保標章實驗室認證問題有待解決

  近年來,國際企業強調「綠色商機」,綠色競爭力更成為台灣企業進軍國際市場的指標之一。政府配合綠色風潮,鼓勵國內綠色生產及綠色消費,在政府採購法增列綠色採購條款,並通過「機關優先採購環境保護產品辦法」。然而這些美意,卻可能因為環保標章實驗室認證問題,大打折扣。   造成上述結果的主要原因是,我國因相關環保法令不周全,環保管理、監督單位權責不一,形成三不管局面,影響廠商競爭力。舉例而言,現在環保署嚴格把關環保標章實驗室,檢查近 20 家實驗室,最後只認定三家有合格檢測能力,廠商要取得環保標章,一定要找這三家業者,形成供需嚴重失衡局面,廠商耗時、浪費金錢,還是拿不到環保標章。   另外,環保標章實驗室的管理單位,應該是環保署還是經濟部標準檢驗局;發生爭議事件,環保署和標準局各有說詞。環保標章是環保署核發,但實驗室檢測、管理則由標檢局負責,故而出現三不管的局面。   今年 7 月 1 日 ,歐盟全面執行 RoHS (無鉛製程)環保措施,明年,歐盟開始執行 WEEE (廢棄電機電子產品回收)環保措施,由於台灣資訊大廠 98% 為出口導向,這兩個規定使我國資訊廠商不得不審慎因應之,然而, RoHS 及 WEEE 僅是一個開端,未來歐盟一旦通過 REACH 規則,因環保要求而受影響的產業將更多,可見環保標章實驗室認證問題,必須嚴格看待並儘速解決。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP