本文為「經濟部產業技術司科技專案成果」
美國發明法(Leahy-Smith America Invents Act, AIA)於今年度(2013)3月16日全面實施,係近年來美國專利制度的重要變革,茲就AIA第三階段生效的重點介紹如下: 1.專利權申請制度的變革 為促進美國專利制度與國際接軌、保障發明人權利,專利申請權歸屬將由原本的「先發明制」(First to Invent),改為發明人「先申請制」(First Inventor to File)。簡言之,是以「有效申請日」先後決定專利權歸屬。 2.新穎性標準的修改 修法後的新穎性標準係以「有效申請日」為斷。惟,新法仍保留新穎性寬限期(grace period)之規定,為避免採行「先申請制」而延宕發明技術公開之窘境,新法限縮申請人享有寬限行為的範圍,僅限於「發明人的公開行為」才不構成先前技術之公開。 上述兩項修法內容皆於3月16日正式生效。美國總統歐巴馬於2月的座談會中公開表示,AIA為其任內推動的重要修法,顯示政府欲藉由法制改革,打擊專利蟑螂濫訴的決心。
「亞馬遜公司(amazon)」積極向美國政府機關推動其所開發的人臉辨識軟體“Rekognition”,將可能造成隱私權的重大侵害亞馬遜公司所開發的“Rekognition”軟體可以進行照片中的人臉辨識識別,單張圖片中可辨識高達一百人,同時可以圖片進行分析及比對資料庫中的人臉長相。目前亞馬遜公司積極向政府機關推銷這套軟體。可能造成的風險是,公權力機構可透過使用“Rekognition”軟體來辨識或追蹤任何個人,警察機關可以隨時監控人民的行為,各城市的政府機關也可能在無合理理由的狀況下隨時查看人口居住狀況,尤有甚者,美國移民及海關執法局(Immigration and Customs Enforcement, ICE)可以使用該軟體來監控移民的狀況,即使是無任何犯罪疑慮的狀況下亦可進行,將政府打造成巨大的監控系統,有造成隱私權嚴重侵害的疑慮。因此無論亞馬遜公司內外都有反對將“Rekognition”軟體推銷給政府機構的聲浪,尤其美國公民自由聯盟(American Civil Liberties Union, ACLU)更是發起多項連署抗議。 支持政府使用“Rekognition”軟體的意見則認為,使用“Rekognition”軟體將可以更有效率地辨識人臉,在尋找失蹤兒童或在公共中辨識出恐怖份子可以發揮更大的作用,不啻是保護公眾法益的進步。 佛羅里達的奧蘭多市警察機構曾經使用“Rekognition”軟體後因契約到期而一度停止使用,於7月9日與亞馬遜公司續約繼續測試使用該軟體,奧蘭多市警察機構宣稱以目前測試階段將不會使用一般民眾的照片進行測試,將不會造成人民的隱私權侵害。
美國眾議院法制委員會全體一致通過專利法2007年改革法案美國眾議院法制委員會於七月十八日全體一致通過「專利法2007年改革法案」( Patent Reform Act of 2007),根據美國軟體與資訊工業協會( Software & Information Industry Association,簡稱SIIA)的總裁Ken Wasch表示,該修正案的通過是美國專利制度現代化的重要指標,而一個有效率且公正的專利制度對於繼續美國國內經濟發展並領導全世界經濟時具有舉足輕重的地位。眾議院的議員Howard Berman表示,對於美國專利核發品質低落、花費高昂及時間冗長的訴訟程序已經嚴重地阻礙到創新力與創造力。這次修法的目的在於改善專利的品質、嚇阻專利所有人權利的濫用、以異議專利的有效性的方式以提供更有意義且低花費的替代式專利訴訟、並讓美國專利法能與其他國家的專利法調合。 該法案除了通過的部分包括「不正當行為」(Inequitable Conduct )、「犯罪地的限制」(Restrictions on Venue)、「損害賠償的取得」(Awards of Damage)修正。最令人注意的是,刪除了最具爭議的「專利權核准後審查程序」( Posted- granted Review),該程序並無時間的限制,而始得專利侵權訴訟中之被告能夠對專利之有效性向美國專利商標局提出再審的請求。法制委員會對此程序舉行多次公聽會,但修正案仍以增加現有「專利再審制度」( Reexamination)的方式取代之。 實務界認為,本修正案會使得專利的價值降低,而使得一些非以製造產品為公司營運目的,但專事經營擁有並實施專利權為主要歲收來源的「專利巨人」(Patent Tolls)公司生存困難。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。