美國紐百倫公司(以下稱New Balance)去年控告中國大陸當地三家製鞋商侵害其中N字logo商標。其中一位被告為已在美國科羅拉多州成立公司的新百倫體育用品有限公司(USA New Bai Lun Sporting Goods Group Inc)。近日,中國大陸蘇州中級人民法院判決在一審判決中判處這三名被告侵害New Balance商標權,應支付New Balance人民幣一千萬元(即美金一百五十萬元)之損害賠償。
一名美國律師指出,此賠償數額以國際標準而言不算高,但這是中國大陸外企至今在商標侵權爭議案件中獲得的最大一筆賠償金,對在中國大陸的外企而言是一大鼓舞。New Balance品牌保護經理Angela Shi表示,此案的勝訴讓New Balance更有信心繼續在中國大陸開展品牌保護的工作。
根據中國大陸當地律師指出,過去中國大陸各地方人民法院由於必須考量當地就業及社會穩定等因素,較不傾向做出有利於外企的判決。在本判決之前,美國總統川普曾簽屬一份備忘錄,要求調查中國大陸竊取美國企業智慧財產權之問題,而中國大陸國家主席習近平近期亦曾公開表示要嚴懲侵害智慧財產權者。本次New Balance的勝訴,除了對外企而言有標竿性的作用外,也展現了中國大陸政府解決仿冒問題的決心。
美國網路安全暨基礎設施安全局(CISA)於2025年8月13日發布該機關與美國、澳洲、加拿大、德國、荷蘭、紐西蘭等國共計八個國安資安相關機構,合作訂定之《工控資安基礎:適用於擁有者與營運者的資產清冊指引》文件,旨在針對易受惡意網路行為攻擊且提供重要服務的能源、水務、製造業及其他領域關鍵基礎設施營運技術(Operational Technology,OT)系統,協助其資產擁有者與營運者建置與維護完整的OT資產清冊,並輔以OT分類體系(Taxonomy)。 OT資產清冊範圍涵蓋組織OT系統與相關軟、硬體,該指引主要說明OT資產擁有者與營運者建置與維護OT資產清冊的流程,包含: 1. 定義清冊範疇與目標(Define Scope and Objectives) 2. 辨識資產及蒐集屬性資料(Identify Assets and Collect Attributes) 3. 建立分類體系(Create a Taxonomy to Categorize Assets) 4. 管理與蒐集資料(Manage and Collect Data) 5. 實現資產全生命週期管理(Implement Life Cycle Management); 此外透過OT分類體系可幫助區分優先序、管理所有OT資產,有助於風險識別、漏洞管理,以及資安事件應變;有關如何建立OT分類體系,該指引亦提供流程建議如: 1. 根據功能及關鍵性執行資產分類(Classify Assets) 2. 對資產功能類型與其通訊路徑進行分類(Categorize (Organize) Assets and their Communications Pathways) 3. 建構體系架構與互動關係(Organize Structure and Relationships) 4. 驗證資產清冊資料準確度與圖像化(Validate and Visualize) 5. 定期檢查並更新(Periodically Review and Update) 該指引認為,建置OT資產清冊並輔以OT分類體系對期望建立現代化防禦架構的擁有者與營運者而言至關重要。透過上述作為,資產擁有者與營運者得以識別其環境中應加以防護及管控的關鍵資產,並據以調整防禦架構,建構相應的資安防禦措施,以降低資安事件對組織任務(Mission)與服務持續性(Service Continuity)的風險與影響。該指引亦強調關鍵基礎設施之OT與IT(資訊技術)部門間之跨部門協作,並鼓勵各產業組織參考指引步驟落實OT資產盤點與分類,以提升整體關鍵基礎設施資安韌性。
台灣智慧財產管理規範(TIPS)之發展與現況 歐盟執委會委員宣布將對電子商務領域進行反壟斷調查掌管競爭事務的歐盟執委會委員Margrethe Vestager於3月26日在柏林記者會上宣布,接下來的競爭調查將鎖定在電子商務領域。這項調查將涵蓋歐盟所有會員國,旨在調查是否有公司透過契約或其他障礙,限制消費者在歐洲境內進行跨境交易。縱使越來越多的歐洲商品和服務是經由網路來交易,歐盟內部的跨境線上交易卻成長緩慢。造成此現象的原因可能是由於語言隔閡、消費者喜好及會原國間法令的差異。然而,亦有跡象顯示,有些公司會採取相關措施來限制跨境線上交易。 因此,對於該領域的調查重心會放在如何加強識別及因應這些限制跨境交易的措施;以配合執委會的目標: 創造一個相連的數位單一市場。執委會委員Margrethe Vestager會在接下來的星期提出該提案於委員會。 歐洲消費者屬於線上服務之狂熱使用者。在2014年,約有半數的歐洲消費者在線上消費;然而,在這半數內,僅有15% 的線上消費者是向歐盟其他會員國之業者購買。這顯示在歐盟境內,電子商務仍然有巨大的跨境障礙。例如: 技術障礙,如地理隔閡,將限制消費者從其所在地或使用其信用卡進入特定網站。 執委會委員Vestager因此決定向委員會提出對於電子商務領域的競爭調查,以促進執委會實現單一數位市場的目標。 該調查是執委會企圖把歐盟分裂的線上市場整合為單一數位市場的策略之一。經過分析後,若執委會認定有競爭爭議,會開啟案件調查,以確保電子商務領域已遵守禁止限制商業行為及濫用獨占地位之歐盟法規(歐盟運作條約第101條和第102條)
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。