美國紐百倫公司(以下稱New Balance)去年控告中國大陸當地三家製鞋商侵害其中N字logo商標。其中一位被告為已在美國科羅拉多州成立公司的新百倫體育用品有限公司(USA New Bai Lun Sporting Goods Group Inc)。近日,中國大陸蘇州中級人民法院判決在一審判決中判處這三名被告侵害New Balance商標權,應支付New Balance人民幣一千萬元(即美金一百五十萬元)之損害賠償。
一名美國律師指出,此賠償數額以國際標準而言不算高,但這是中國大陸外企至今在商標侵權爭議案件中獲得的最大一筆賠償金,對在中國大陸的外企而言是一大鼓舞。New Balance品牌保護經理Angela Shi表示,此案的勝訴讓New Balance更有信心繼續在中國大陸開展品牌保護的工作。
根據中國大陸當地律師指出,過去中國大陸各地方人民法院由於必須考量當地就業及社會穩定等因素,較不傾向做出有利於外企的判決。在本判決之前,美國總統川普曾簽屬一份備忘錄,要求調查中國大陸竊取美國企業智慧財產權之問題,而中國大陸國家主席習近平近期亦曾公開表示要嚴懲侵害智慧財產權者。本次New Balance的勝訴,除了對外企而言有標竿性的作用外,也展現了中國大陸政府解決仿冒問題的決心。
紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
歐洲執委會公布安全,清潔,聯網式交通行動議程歐盟執委員會於2018年5月17日公布第三套安全,清潔和聯網式行動議程,該套行動也是最後一套實現歐洲運輸系統現代化的措施。 在2017年9月的國情咨文中,歐盟主席容克提出歐盟產業成為創新,數位化和低碳化均能領先於全球地位的目標。基於此原因,在交通領域執委會2017年5月和11月的提出兩套歐洲行動措施,其目標係讓所有歐洲人都能從享受更安全的交通,更少污染的車輛和更先進的技術解決方案,並同時加強歐盟產業業的競爭力。為此,本次議程聚焦包括未來車輛和基礎設施安全措施綜合政策;重型車輛的二氧化碳標準; 歐洲發展和製造電池的戰略行動計畫以及關於車聯網和自駕車的前瞻性戰略。 而歐洲能源聯盟表示:交通正到跨越一個新的技術前沿,透過能源聯盟的最終提案,將可幫助我們相關產業保持領先地位,並透過大規模研發關鍵技術解決方案,包括潔淨能源之電池技術和建置相關充電基礎設施,以解決碳排放,行車擁堵和降低事故發生。 歐盟氣候行動與能源專員亦表示:所有部門都必須為實現巴黎協議之氣候承諾做出貢獻,這就是為什麼歐盟在有史以來第一次訂定提提高燃油效率標轉和減少碳排放的標準,也為歐洲工業鞏固當前在創新技術領域的領導地位。 歐盟交通運輸專員亦表示:過去一年,執委會在通領域提出許多重大舉措,以提升未來交通安全、乾淨及聯網性。所有措施皆以乾淨且智慧的交通工具目標前進,並尋求各成員國和歐洲議會能支持該雄心壯志。 歐盟內部市場,產業,創業和中小企業專員表示:90%的道路交通事故係出於人為錯誤,目前提出新的強制性安全功能將減少事故的數量,並有利車聯網及自駕車技術發展。 本次議程內容簡介如下 交通安全 從2001年至今道路死亡人數減少已了一半以上,然2017年歐盟境內仍有25,300人交通事故身亡,及13.5 萬人受重傷。因此,歐盟執委會建議新型車輛應配備先進的安全功能,例如用於汽車的先進緊急煞車和車距保持輔助系統或卡車對於周遭行人和用路人之檢測系統。此外,委員會將幫助成員國能在危險路段進行系統性改善建設投資。預計將可挽救多達10,500人的生命,並在2020-2030年期間避免接近6萬人的嚴重受傷,從而為歐盟實現2050年接近零死亡和重傷的長期目標做出貢獻。 交通能源清潔性 歐盟執委會將提出有史以來第一個重型車輛的二氧化碳排放標準來完成低排放交通系統的計畫。此外,2025年,新卡車的二氧化碳平均排放量必須比2019年低15%。2030年,新卡車與2019年相比,必須達到至少30%的減排目標。該目標符合可協助歐盟於巴黎協議所作的承諾,並將使運輸公司(主要是中小企業)透過降低油耗(5年25,000歐元)節省大量成本。為了進一步減少二氧化碳排放,委員將會促進更多的先進低汙染的車輛(例如:改善汽車動力學、輪胎等零件)。此外,委員會將提出一個全面的行動計畫,將有助於在歐洲建立一個具有競爭力和永續性發展的電池生態系統。 車聯網及自駕車 目前越來越多地車輛已配備駕駛員輔助系統,並朝完全自動駕駛車輛目標邁進。因此,該戰略將著眼於道路使用者之間的新協同操作,此將為整個交通系統帶來巨大的利益。運輸將變得更安全,更清潔,更便宜,並使老年人和行動不便的人更方便。此外,執委會建議建立一個全數位化的貨運資訊交換環境,以促進物流運作的數位資訊流。
宏碁起訴代工廠 反擊惠普侵權控訴宏碁(Acer)歷經惠普(HP)今年相繼兩次之侵權控訴,於向惠普尋求和解未獲得回應後,宏碁之美國子公司於5月9日在美國德州聯邦法院遞狀,向其代工廠鴻海、緯創及廣達等三家廠商提起訴訟,要求下游代工廠商共同負責,協助其與惠普的官司訴訟。 此三家廠商在擔任Acer的供應商之同時,亦是HP的設計代工製造(ODM)廠商。宏碁為回擊惠普在美國對其專利侵權之訴訟,因而使出該絕招,並要求此三家供應廠商「共同履行訴訟保證責任」負起連帶保證之責任,並對惠普之侵權訴訟案給予協助。 宏碁表示,此一訴訟僅為配合美國法律程序而採取之必要行動。鴻海則表示,宏碁、惠普兩大客戶都是依據法律途徑正當保障並維護本身的權益,鴻海會依法律程序配合。廣達表示,此案已進入法律程序,未來將依法律途徑,尋求圓滿的解決。緯創則不予置評。 宏碁今年登上全球第三大PC寶座,而惠普連續兩次向美國法院控告宏碁涉嫌侵權之舉,被認為係意圖阻擋宏碁在美國市場之發展。宏碁表明,代工廠挨告的原因係由於與其合作模式為宏碁負責銷售,代工廠負責研發設計,和代工廠在合作之初,即已確保其所有提供給宏碁的技術,不會侵犯其他公司的專利,也約定廠商有義務負責相關專利訴訟賠償。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。