開放非銀行事業從事預付式行動付款服務法制議題之研究

刊登期別
2006年03月
 

※ 開放非銀行事業從事預付式行動付款服務法制議題之研究, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=788&no=66&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國總統歐巴馬宣布增加強化美國網路安全預算經費

  為強化並有效因應網路安全相關議題,美國總統歐巴馬日前於4月10日提出在2014財政年度(於2013年10月開始起算)增加強化網路安全經費之建議,期待透過藉由加強並建置相關網路安全機制的方式,有效解決目前美國所面臨來自中國、伊朗、俄國、以及其他國家之的網路安全威脅;同時,其亦希望藉此厚植並改善美國政府,以及私人企業的電腦網絡防禦能力。   本次由美國總統歐巴馬所提出的國家網路安全策略主要可區分為二部分:1. 加強美國網路事件(cyber incidents)的彈性度,以及2. 減少網路威脅事件。首先針對加強美國網路事件彈性度的部份,主要會透過a. 強化美國數位基礎建設,進而能有效抵禦滲透和干擾,b. 改善美國對於複雜和敏捷的網路威脅防禦能力,以及c. 培養針對不同類型的網路事件,皆能快速應變並恢復的能力,這三個方法來加以落實。而就減少網路威脅事件的部份,則計畫以透過a. 與美國友邦結盟的方式,共同研議國際網路規範,b. 強化網路犯罪的法律執行能力,和c. 遏止潛在對手就現有之美國網路漏洞採取不當行動,三個策略模式的實施來加以實踐。然而除了上述的兩個策略及其子項的具體落實外,美國政府亦強調串連各政府部門,以及私人企業團體間之合作重要性,以及建立一個能夠使得網路維護人員及其他相關人員,得以快速取得相關網路安全資訊的便捷管道亦為重要。   隨著全球資通訊網路交流互動以及依賴程度日益增長,如何有效兼顧個人網路安全隱私及使用自由,並同時確保網路資訊流通的安全性,乃為目前強加網路安全的重要關注焦點。本次美國總統歐巴馬所提出的網路安全推動策略走向,及其如何加以落實,實值得持續關注。

美國賓州眾議院通過《人工智慧生成內容揭露法》

美國賓州(Pennsylvania)眾議院於2024年4月10日通過《人工智慧生成內容的揭露法草案》(House Bill 1598 Disclosure of Artificially Intelligent Generated Content,下稱草案),規範AI生成內容及其利用行為以保護消費者。 草案規定,以AI生成之各種形式內容,在其首次呈現給消費者時應揭露資訊,使消費者知道該內容為AI生成之結果。如果明知或重大過失(Knowingly or recklessly)產出、散布或發布任何未「明確且顯著」(clear and conspicuous)揭露其內容為AI所生成者,即屬「不公平或欺騙性行為或做法」,將被依賓州《不公平貿易行為與消費者保護法》(Unfair Trade Practices And Consumer Protection Law)規定處罰。草案亦說明應如何揭露資訊,方符合條文所謂「明確且顯著」標準,例如針對AI生成之音訊內容,其揭露應以足夠的音量和節奏傳達,以便消費者聽取和理解。 此外,草案也關注兒童保護問題。鑑於AI生成的兒童性剝削圖像通報日益增加,草案最後新增規定,未來不能將「兒童性剝削圖像為AI生成」作為辯護理由,且檢察總長或地區檢察官可起訴製造、持有以及傳播AI生成之兒童色情或性虐待素材等相關行為。 目前草案已在州眾議院通過,由州參議院審議中。草案的提案議員強調,人們有權知道其消費的內容實際上是使用AI產出的成果,因此草案通過後,可望有效遏阻濫用AI的行為,提供賓州民眾更多的保障。

智慧型運輸系統之頻譜規劃-參考美國及歐盟之規範

TOP