成功的物聯網(IOT)平台生態系統取決於多種因素,2017年4月3日歐盟智慧聯網研發推動平台( European Research Cluster on the Internet of Things)在物聯網活動平台分析(Analysis on IoT Platforms Adoption Activities)中提出六個成功的重要因素:
本文為「經濟部產業技術司科技專案成果」
美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
美國總統發布行政命令,促進資料中心基礎建設之發展2025年7月23日,川普總統簽署行政命令,加速資料中心基礎建設(data center infrastructure)之發展。適用該命令之資料中心,需新增超過100百萬瓦(MW)電力負載,並新增瓦數專用於人工智慧推論、訓練、模擬或產生合成資料。 行政命令內容主要包含以下事項: 1. 政府將為合格資料中心基礎建設提供財政支持,如貸款、貸款擔保、補助金(grants)、稅收優惠(tax incentives)或承購協議(offtake agreements)。本行政命令所稱之合格資料中心基礎建設,其本體或相關設施需符合以下條件之一: (1) 業者承諾投資超過五億美元,五億以上之具體門檻以美國商務部長認定為準。 (2) 新增超過100百萬瓦(MW)之電力負載。 (3) 有助於維護國家安全。 (4) 經美國國防部、內政部、商務部或能源部之部長指定。 2. 撤銷拜登總統發布之14141號行政命令「推進美國在人工智慧基礎建設領域的領導地位」。該命令原要求在聯邦土地建設人工智慧資料中心者須提供關於多元與氣候議題之說明。 3. 指示政府機關簡化合格資料中心基礎建設的環境審查和許可。 (1) 相關政府機關應向環境品質委員會(Council on Environmental Quality)確定依《國家環境政策法》(National Environmental Policy Act),可以加速合格資料中心基礎建設建置的環境審查豁免措施。 (2) 環境品質委員會應考量資料中心基礎建設對環境產生之影響,制定新的環境審查豁免措施。 4. 對符合FAST-41計畫(FAST-41 program)要求之資料中心基礎建設,加速其取得建設相關許可之過程。 該計畫名稱及內涵緣起於《修復美國地面運輸法》第41章節(Title 41 of the Fixing America's Surface Transportation Act)。一般而言,參與該計畫之建設,需滿足指定投資額、受指定組織贊助、於指定地點興建,或合乎特定環境法規等要求。合乎計畫要求之建設,可與主管機關協調取得建設相關許可之時間,並由聯邦許可改善指導委員會(The Federal Permitting Improvement Steering Council)下屬團隊協助進行專案管理。 5. 環境保護局(Environmental Protection Agency)局長應依法定權限,加速確認可供合格資料中心基礎建設使用的棕地(brownfields)。 依美國環境保護局定義,棕地是指含有危險物質、污染物的土地,因開發利用困難,需進行養護、排除開發障礙,或以其他方式開發。 6. 內政部、能源部應依法確定適合用於建設資料中心的土地,適當授權合格資料中心基礎建設業者在聯邦土地上進行建造。 參酌該行政命令意指,美國政府期許減少環境政策對人工智慧資料中心及相關設施的影響,透過快速推動建設進程,確保美國經濟繁榮,以及在科學、數位經濟領域的領導地位。
美國證券交易委員會允許Overstock公司以區塊鏈(Block Chain)技術為基礎發行公司證券數位金融時代已然來臨。美國金融證券市場在2015年12月發生一些重大轉變,其中之一為美國證券交易委員會(U.S. Securities and Exchange Commission,下稱SEC)允許Overstock.com公司以區塊鏈技術(Blockchain technology)為基礎透過網路發行公司證券。 區塊鏈技術為一種以分散式結構方式,記錄數據、傳輸及驗證的方法。當有資訊產生時,所有相連電腦會共同驗證該資訊之真實性。驗證該資料具真實性後會寫入區塊鏈,並產生不可竄改的紀錄。 區塊鏈技術特點如下: 一、分散式結構之設計:可達到去中心化效果,以此降低資料遭駭客攻擊或竄改之風險,提升資訊安全。 二、驗證機制:可提供所有參與者共同驗證資料真實性,打造安全可靠之共識環境。 三、P2P機制:可節省繁瑣程序並降低交易成本。 綜合上述三點,區塊鏈技術受到市場極大的關注。為提升資訊安全與降低交易成本及因應數位金融時代,金融業者嘗試將區塊鏈技術應用於股票、債券或是有價證券交易市場,期望可完善金融交易環境。 雖然區塊鏈技術潛在市場龐大,但Overstock公司也在向SEC申請允許以區塊鏈技術發行證券之文件中,指出其選擇將公司訊息儲存在任何人皆可查閱之公開區塊鏈,可能導致個人對其隱私安全的疑慮。即便有此風險,仍認為區塊鏈技術應用於發行證券,將有助完善證券市場交易環境,透過區塊鏈技術,將可紀錄所有交易,從中減少中間商控制市場的空間,並減少賣空之套利行為。 但是,將區塊鏈技術應用於數位金融或許將衍生金融法規相關問題。因為金融法規針對不同類型金融商品,有相關規範管制。若應用區塊鏈技術於相關金融商品,勢必產生相應問題。諸如:股票交易需依據證券交易條例實行,然其中並未設有電子移轉及交易相關規範,若應用區塊鏈技術進行證券交易,主管機關須思考如何規範並控管市場。因此,金融法規將勢必隨之調整以符合數位化趨勢。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」