歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱

  成功的物聯網(IOT)平台生態系統取決於多種因素,2017年4月3日歐盟智慧聯網研發推動平台( European Research Cluster on the Internet of Things)在物聯網活動平台分析(Analysis on IoT Platforms Adoption Activities)中提出六個成功的重要因素:

  1. 策略與利害關係人的參與(Strategy & Stakeholder Engagement):成功物聯網平台除了要製定良好的願景外,並讓主要利害關係人適當的參與系統策略,與整體政策格局保持一致性。
  2. 社群的支持(Community Support):社群支持程度決定了物聯網系統的吸引力,透過適當的的機制和工具,以有效地減少參與的障礙。
  3. 開放性(Ecosystem Openness):非常封閉的物聯網系統,吸引較少參與者。透過適當的開放以鼓勵利害關係人之參與,並減少進入之障礙。
  4. 技術的進步程度(Technology Advancement):越是被廣泛使用的技術及技術特徵,越可以顯著增加物聯網系統的吸引力,除了提高績效以外,並增加系統存續之可能性。
  5. 市場機制(Marketplace Mechanisms):透過市場機制可以取得用戶間的信任感,以增加參與的可能性,透過參與者價值交流進一步鼓勵參與。
  6. 包容性(Technology Inclusivity):物聯網系統很少是孤立的,必須考慮許多外部因素,如架構技術、物聯網設備、服務等。物聯網生態系統越包容其他流行技術,越有可能被使用者接受。

本文為「經濟部產業技術司科技專案成果」

※ 歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7893&no=57&tp=5 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
澳洲發布國家身分韌性戰略

所謂「身分」(Identity)是「特徵」(characteristics)或「屬性」(attributes)的組合,可讓個人在特定環境中與其他人區分開來,以證明自己的身分,例如出生日期和地點、臉部圖像等。澳洲政府有鑑於數位經濟的快速成長,線上身分驗證比實體身分驗證更為頻繁,促使犯罪人竊取和濫用身分資訊與資格證明(credentials),使得越來越多人面臨網路犯罪和詐欺的風險,澳洲在2021年時更因為身分竊盜事件橫行,造成超過18億美元的經濟損失。 為此,澳洲資料和數位部長會議(Data and Digital Ministers Meeting, DDMM)於2023年6月23日發布「國家身分韌性戰略」(National Strategy for Identity Resilience),以取代2012年國家身分安全戰略(National Identity Security Strategy),宣示澳洲政府加強身分基礎設施和對身分竊盜的韌性與復原力,推動澳洲各州、領地(territory)和聯邦(Commonwealth)採用全國一致的身分韌性方法,使得個人身分難以被竊取,縱然不幸遭竊取,受害人亦能夠輕易自身分犯罪中恢復身分。 該戰略由十項原則組成,包含:(1)無縫接軌的聯邦、州和領地數位身分系統;(2)具包容性的身分辨識機制;(3)個人與公私部門都有各自角色;(4)制定國家實體與數位資格證明標準;(5)建立生物辨識和經同意的身分驗證;(6)便利個人跨機構更新身分資訊;(7)更少的資料蒐集與保存;(8)明確的資料分享協議;(9)資格證明的一致撤銷和重新簽發;(10)明確的問責與責任。搭配短、中、長期的實施規畫,循序漸進地加強與一制化澳洲跨司法管轄區的身分安全管理機制。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

英國發布「科學技術框架」2024最新施政進度,積極推動創新技術發展

英國科技創新部(Department for Science, Innovation & Technology, DSIT)於2024年2月9日發布「科學技術框架」(Science and Technology Framework)最新施政進度,相關重點如下: (1)此框架旨在強化國家科技競爭力,聚焦五項關鍵技術領域:人工智慧、工程生物學、未來通訊、半導體和量子技術。 (2)擬實現十項關鍵措施:辨識關鍵技術、對國內外展示英國科技實力,吸引優秀人才及投資、促進公私部門投資新興科技、發揮英國多樣化技能、技術和創業人才優勢、為新創產業提供資金補助、促進公部門採購轉型、戰略性參與國際事務提升話語權、建立數位基礎設施優化研發環境、制定創新法規與全球標準、鼓勵公共部門建立支持創新文化,改善服務等。 (3)提出五大戰略領域發展策略,並由「英國研究創新(UK Research and Innovation, UKRI)資金」鉅額資助,並吸引私部門企業、慈善單位共同投資。 (4)提出「支持創新技術監管建議」(Recommendations from the Pro-innovation Regulation of Technologies Review):由政府首席科學顧問群對跨領域前沿技術、先進製造、創意產業、生命科學、數位技術及綠色產業等領域提出監管建議。 (5)推動「退休基金改革措施」(Mansion House Reforms):於2023年7月10日提出,政府支持運用退休金投資創新企業,除可提高退休金持有人之收益外,亦增加新創資金流動性,並促其於英國設立公司及上市。

政府推動跨部會生質柴油發展計畫,台北縣環保局率先試行生質柴油

  因應國際油價高漲、石油減產危機、京都議定書生效等衝擊,經濟部能源局將整合環保署、農委會,成立跨部會生質柴油發展計畫,計劃2010年達成國內生質柴油產量10萬公秉,替代國內車用柴油使用量約6%。   「生質柴油」乃是指動植物油或廢食用油經過轉化技術後所產生的酯類,直接使用或混合柴油可以作為燃料,為一再生清潔能源;目前台北縣環保局已結合五家客運業者、一家貨運業者、四個公所清潔隊及八里掩埋場,推動四十八輛客運車等添加柴油試運行,以實際了解生質柴油的效益。   試行時間預定至明年二月底止,預計試行車輛行走公里數為 四十四萬八千公里以上,重型機具運轉三百二十六小時以上。台北縣環保局還將安排試行車輛到台北縣林口柴油車動力計檢測站進行綜合排氣檢測,以瞭解車輛使用質柴油的所產生的污染減量成效。

TOP