歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱

  成功的物聯網(IOT)平台生態系統取決於多種因素,2017年4月3日歐盟智慧聯網研發推動平台( European Research Cluster on the Internet of Things)在物聯網活動平台分析(Analysis on IoT Platforms Adoption Activities)中提出六個成功的重要因素:

  1. 策略與利害關係人的參與(Strategy & Stakeholder Engagement):成功物聯網平台除了要製定良好的願景外,並讓主要利害關係人適當的參與系統策略,與整體政策格局保持一致性。
  2. 社群的支持(Community Support):社群支持程度決定了物聯網系統的吸引力,透過適當的的機制和工具,以有效地減少參與的障礙。
  3. 開放性(Ecosystem Openness):非常封閉的物聯網系統,吸引較少參與者。透過適當的開放以鼓勵利害關係人之參與,並減少進入之障礙。
  4. 技術的進步程度(Technology Advancement):越是被廣泛使用的技術及技術特徵,越可以顯著增加物聯網系統的吸引力,除了提高績效以外,並增加系統存續之可能性。
  5. 市場機制(Marketplace Mechanisms):透過市場機制可以取得用戶間的信任感,以增加參與的可能性,透過參與者價值交流進一步鼓勵參與。
  6. 包容性(Technology Inclusivity):物聯網系統很少是孤立的,必須考慮許多外部因素,如架構技術、物聯網設備、服務等。物聯網生態系統越包容其他流行技術,越有可能被使用者接受。

本文為「經濟部產業技術司科技專案成果」

※ 歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7893&no=57&tp=5 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
英國交通部將擬議新增無人機規管措施

  在過去幾年,涉及無人機的事故發生頻率急遽上升,從2014年的6起事件至2017年增加到93起,根據英國交通部(The Department for Transport)研究顯示,重達400克的無人機可撞碎一架直升機的擋風玻璃、2000克無人機可嚴重損壞一架客機的擋風玻璃。為防止濫用無人機,保障大眾安全,英國交通部將提出更嚴格的規管措施,並於2018年7月26日起於網站上公開徵求意見,若通過將成為無人機法案(Drones Bill)草案的一部分。   擬議之規管措施包括:(1)設定小型無人機持有者之最低年齡;(2)賦予警察對於違規無人機之執法權力,如對於違規之無人機,即時開立罰緩處分;(3)使用新的反無人機技術(counter-drone technology)以保護公眾活動,確保國家關鍵基礎設施免受滋擾,並防止物品走私至監獄;(4)規定無人機操作員於無人機起飛前,透過應用程式(apps)提交飛行計劃。   無人機應用產業在未來十年將迅速成長,新措施之目的係為確保無人機之使用安全。交通部政務次長(Parliamentary Under Secretary of State for Transport)Baroness Sugg表示,無人機為社會和經濟帶來良好效益,為防止無人機造成的滋擾超過其潛在利益,將新增規管措施,並進行公開諮詢。   此外,從2018年7月30日起,禁止無人機飛行高度超過122公尺(400英尺),及不得於距離機場邊界1公里(0.6英里)內飛行之飛航令(Air Navigation Order)已正式施行,違反者將面臨高達2,500英鎊的罰金或處五年以下有期徒刑。

FCC公佈第三次美國寬頻測量報告

  延續過去兩年針對全國寬頻網路服務進行檢視,FCC在2013年2月公布第三次「美國寬頻測量報告」(Measuring Broadband America)。這份報告有別於過去,將受測技術從DSL、有線電視與光纖,涵蓋至衛星寬頻,使資訊更加多元。此外,網路服務供應商(Internet Service Provider,ISP)在今年尖峰時段(工作日晚間7點至9點)提供寬頻實際速度與網速的契合率達97%,而較2011、2012年進步,因此,這份報告的另一個重點,便是提出寬頻速度與廣告相符的三大關鍵:   1.ISP業者盡力改善網路效能(Network Performance),而非調降牌告價(Speed Tiers )。   2.民眾接納更快速的網路意願,更甚過往。FCC指出,消費者訂閱網速的層級,逐漸從每秒14.3Mbps ,發展至15.6 Mbps。至於,使用網速低於1Mbps、或是1Mbps到3Mbps的民眾,近年也逐步採用更高速的網路。   3.衛星寬頻的進步:雖然,衛星技術在傳輸上仍有延遲的缺陷,但是,有近90%的民眾於尖峰時段,得到超過業者寬頻廣告速度的140%(業者宣稱具有12Mbps),使消費者感受不出網路尖峰期。   為使2015年實現50Mbps寬頻網路具有1億家戶可連結,美國逐步發展國家寬頻計畫(National Broadband Plan,NBP)。FCC避免寬頻廣告速度與實際速度不符影響NBP發展,未來將要求ISP業者對於網路牌告負起責任(Accountability),藉此增加市場競爭性與提高資訊透明度。以「美國寬頻測量報告」為例,藉由委員會、產業與其他利益相關人合作的方式,促進資訊的透明,使消費者在取得訊息後,有能力做出正確的決定,便是一種提高透明度的方式。   雖然,FCC認為寬頻網路進步與民眾採納較高速的網路,對於市場發展是一項利多,但部分輿論卻認為這與2011年12月31日FCC網路接取報告(Internet Access Report)結論相距甚遠。根據報告顯示,美國有高達42%的民眾下載速度不到3 Mbps、上傳速度不到769 kbps,而這與「美國寬頻測量報告」結果,確實大相逕庭。無論如何,可以窺見FCC視民眾使用意願與網路基礎建設同等重要,因此,如何增加消費者選擇較高速的網路,將是市場未來發展的關鍵。

英國公告「2014年資料保存和調查法」,落實「歐盟基本權利憲章」精神

  英國政府於2014年7月17日公告施行「2014年資料保存和調查法」(Data Retention and Investigation Powers Act 2014)(下稱新法)。新法係為因應歐盟法院2014年4月8日判決,由於全面資料保存不合比例地干預隱私權和「歐盟基本權利憲章」(EU Charter of Fundamental Rights)對個人資料的保護,歐盟2006/24/EC資料保存指令(Data Retention Directive 2006/24/EC)應予廢棄。該指令要求歐盟各國電話及網際網路公司搜集使用者電話及電子郵件通聯紀錄,包括時間、地點及受話人或收件人,並儲存至多兩年。   新法規範重點摘要如下: 1.相關通訊資料保存: (1)通訊相關資料保存權力受到管制保障: 新法除規範資料蒐集與保存制度,並規定英國政府得要求國內外電話及網際網路業者搜集其客戶通訊資訊,最長可保存12個月。 (2)於第二節補充前一節用語定義。 2.調查權: (1)新法授權政府得基於國家安全和預防或偵查重大犯罪而監聽取得國內外通訊相關資訊。 (2)修正「2000年調查權規範」(Regulation of Investigatory Powers Act of 2000)第一編之域外規範。 (3)擴大「電信服務」定義,納入提供接取、促進使用、促進傳播通訊之創建、管理、儲存或透過相類似系統之傳播者。 (4)通訊監聽委員(the Interception of Communications Commissioner)每半年提出報告。 (5)調查權力及規範之複審。 3.開始、持續期間、範圍和簡稱:新法落日條款之規範,2016年12月31日將失其效力。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP