新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。
為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。
本文為「經濟部產業技術司科技專案成果」
加拿大知名DJ Deadmau5去年(2013年)6月向美國專利商標局申請一個貌似迪士尼米奇老鼠樣子的logo為商標(一個大圓加上兩個小圓盤當作耳朵),此舉引發迪士尼的不滿,於本週二向美國專利商標局提出異議。 迪士尼認為Deadmau5所申請的logo跟其知名的米奇老鼠耳朵(Mickey ears)太過近似,若美國專利商標局核准註冊Deadmau5的logo將可能對其在美國及世界各地的事業有所損害,所以迪士尼正試圖阻止Deadmau5於美國取得註冊商標。 根據Deadmau5的律師陳述,Deadmau5一直以來都帶著老鼠頭形狀的頭套出現在各場合,時間已長達10年已上,且已於超過30個國家取得老鼠頭形狀的註冊商標,包含日本、得國、義大利及英國等。 而此位33歲的知名DJ Deadmau5則於社群網路上發文表示他已經決定好要奮力對戰迪士尼,迪士尼此種積極保護其米奇老鼠商標的行為已行之有年、眾所皆知。例如1989年時迪士尼成功透過法律行動的威脅,讓位於佛羅里達州的三家幼兒照顧中心清除了原本漆於牆上的米奇老鼠和其他迪士尼卡通人物角色。 此次商標註冊爭議,迪士尼究竟能否成功阻止Deadmau5註冊取得類似米老鼠耳朵樣式的logo,值得後續關注。
美國衛生部門公布個人健康資訊外洩責任實施綱領美國健康與人類服務部(Secretary of Health and Human Services;以下簡稱HHS),於2009年4月17日公布「個人健康資訊外洩通知責任實施綱領」(Guidance Specifying the Technologies and Methodologies That Render Protected Health Information Unusable, Unreadable, or Indecipherable to Unauthorized Individuals for Purposes of the Breach Notification Requirements under Section 13402 of Title XIII (Health Information Technology for Economic and Clinical Health Act) of the American Recovery and Reinvestment Act of 2009; Request for Information;以下簡稱本綱領)。本綱領為美國迄今唯一聯盟層級之資料外洩通知責任實施細則,並可望對美國迄今四十餘州之個資外洩通知責任法制,產生重大影響。 本綱領之訂定法源,係依據美國國會於2009年2月17日通過之經濟與臨床健康資訊科技法(Health Information Technology for Economic and Clinical Health Act;以下簡稱HITECH),HITECH並屬於2009年「美國經濟復甦暨再投資法」(America Recovery and Reinvestment Act;簡稱ARRA)之部分內容。 HITECH將個人健康資訊外洩通知責任的適用主體,從「擁有」健康資訊之機構或組織,進一步擴大至任何「接觸、維護、保留、修改、紀錄、儲存、消除,或以其他任何形式持有、使用或揭露安全性不足之健康資訊」的機構或組織。此外,HITECH並規定具體之資料外洩通知方法,即必需向當事人(資訊主體)以「即時」(獲知外洩事件後60天內)、「適當」(書面、或輔以電話、網站公告形式)之方式通知。不過,由於通知之範圍僅限於發生「安全性不足之健康資訊」外洩,故對於「安全性不足」之定義,HITECH即交由HHS制定相關施行細則規範。 HHS本次通過之實施辦法,將「安全」之資料定義「無法為第三人使用或辨識」,至於何謂無法使用或辨識,本綱領明定有兩種情形,一是資料透過適當之加密,使其即使外洩亦無法為他人辨識,另一則是該外洩資訊之儲存媒介(書面或電子形式)已被收回銷毀,故他人無法再辨識內容。 值得注意的是,有異於美國各州法對於加密標準之不明確態度,本綱領已指明特定之技術標準,方為其認可之「經適當加密」,其認可清單包含國家標準與技術研究院(National Institute of Standards and Technology)公布之Special Publication 800-111,與聯邦資訊處理標準140-2。換言之,此次加密標準之公布,已為相關業者提供一可能之「安全港」保護,使業者倘不幸遭遇資料外洩事件,得主張資料已施行適當之加密保護,即無需承擔龐大外洩通知成本之衡平規定。
關於軟體產品的智慧財產權保護建議近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。 然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。 綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。