在香港金融管理局(Hong Kong Monetary Authority, HKMA)於2016年9月推出金融科技監管沙盒(Fintech Supervisory Sandbox, FSS)滿一年後,於今年9月29日再公布2.0升級版。而香港保險業監管局(Insurance Authority, IA)同時發布保險科技沙盒(Insurtech Sandbox),證券及期貨事務監察委員會(Securities and Futures Commission, SFC)亦公告證監會監管沙盒(SFC Regulatory Sandbox),初步完備香港金融領域沙盒制度之建立。
於金融科技監管沙盒2.0版中,香港金融管理局為加強金融科技公司與HKMA連繫機制,將成立金融科技監管聊天室(Fintech Supervisory Chatroom),改變最初金融科技公司僅能透過銀行窗口與HKMA進行試驗商品相關聯繫,造成程序不便、資訊不流通等問題,2.0版後金融科技公司可透過HKMA隸屬之金融科技監管聊天室進行意見回饋。並且由於香港針對金融科技、保險、證券及期貨領域推出三種沙盒機制,故推出「一點通」之一站式便民服務,提供企業選擇沙盒並得以和各機關進行相互協調,此次改革將於年底作業完成。
而IA為促進保險科技發展,推出保險科技沙盒,對於保險公司計畫在香港推出的創新技術不確定是否符合香港法規,給予受授權保險公司在沙盒機制內進行沙盒試驗,在沙盒試驗中,主管機關得隨時對保險公司之風險控管做查核,並且消費者有隨時退出試驗並給予補償機制,IA亦可針對不符合之試驗計劃宣告中止。
另外,SFC開放合資格之企業提供沙盒試驗,所謂「合資格之企業」是指經由香港《證券及期貨條例》規範而設立之持照企業或新創公司,同時該公司必須使用創新科技並為投資者帶來更多優質產品服務,並受惠於香港金融服務業者。並且為保護投資者權益,除申請公司應有給予投資者退出機制與提供賠償方式外,並應揭露潛在風險。若最後申請公司證明其試驗客體可靠且符合目的,可向SFC申請走出沙盒機制,並對外營運。
為解決日益嚴重的騷擾郵件問題,日本總務省於今(2008)年2月29日向國會提出「特定電子郵件送信適當化法修正案(特定電子メール送信適正化法改正案)」,將全面禁止未經收件人事前同意而擅自寄發宣傳廣告郵件,並將海外寄送之騷擾郵件列入適用範圍。 依據現行法之規定,未取得收件人同意寄送廣告或宣傳之郵件時,必須在主旨上標明「未經同意廣告」,並負有標示寄件人名稱、電話號碼之義務。如收件人發出拒絕收件之通知時,即禁止再傳送相關郵件;違反者將處以一年以下拘役或100萬日圓以下罰金。然而,一旦收件人回覆拒絕收件,將使業者察知該郵件帳號為有效帳號;故收件人對騷擾郵件大多不予理會,但如收件人未回覆拒絕收件之訊息時,該騷擾郵件仍得合法寄送。此外,依據調查,目前騷擾郵件中,有九成的電腦郵件及半數的行動電話簡訊,均是從海外所發出,而迴避了現行法之規範。 因此,本次修正草案明定全面禁止未經同意擅自傳送商業電子郵件至他人電腦或行動電話;即使取得收信同意,如中途拒絕時,其後即禁止再傳送郵件。此外,草案並課以郵件中應明示寄件者姓名、名稱及電子郵件地址,並要求須保存如何取得收件者同意之相關記錄。現行法不適用之海外寄送之騷擾電子郵件,也將與日本國內電子郵件受到相同規範。如偽裝電子郵件地址而傳送郵件時,或經總務省要求改善而未加以改善時,將處以最高3000萬日圓罰金。本修正法案預定於2008年中施行。
日本特許廳利用人工智慧審查專利與商標申請日本特許廳(Japan Patent Office,JPO)從去(2016)年12月開始,與NTT Data公司合作,使用人工智慧(Artificial Intelligence,簡稱AI)來系統化的回答有關專利問題,且依成果顯示,與原先運用人力回復的成果相當;JPO因此決定於今(2017)年夏天開始,將AI技術分階段應用於專利及商標的審查案,並期望能於下一會計年度(2018年4月至2019年3月),在審查業務中全面運用AI技術。 JPO指出,透過AI技術能有助於將專利及商標審查程序中繁冗的檢索程序簡化,以專利審查為例,可搜尋大量文件與檔案,進行專利先前技術檢索,以確保相關技術尚未獲得專利保護,同時也可以協助專利分類;此外,商標審查亦可利用AI之圖像辨識技術比對圖片及標誌,找出潛在的類似商標。 AI技術被證實能提升審查效率,並減輕審查人員檢索與比對部份的工作負擔,有助於抑制人工審查的長時間工作型態,根據2017年日本特許廳現況報告(特許庁ステータスレポート2017),於導入AI技術後,原本從申請到審查完成平均約2年左右之審查時間,期望可在2023年將審查期間降到14個月,讓日本成為智慧財產系統審查最快且品質最好的國家之一。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國雅虎公司面臨垃圾訊息的團體訴訟美國芝加哥地方法院於2016年01月04日肯認關於美國雅虎公司(Yahoo Inc)因於2013年3月對美國行動服務斯普林特公司(Sprint Corp)用戶散發垃圾訊息的團體訴訟。本件原為2014年由原告Rachel Johnson提訴,芝加哥地方法院法官Manish Shah認定本件原告已經充分主張本件團體訴訟的共通性,往後所有在2013年被發送該等訊息的用戶,都能加入本件訴訟集團提訴。而根據法院的文書資料,未來將會有超過50萬的斯普林特公司用戶能加入本件訴訟。 原告主張雅虎的簡訊服務向其以及其他斯普林特用戶寄發垃圾訊息而違反1991制定的電信消費者保護法(The Telecom Consumers Protection Act of 1991)。該等簡訊服務會將發信者的線上即時訊息轉為簡訊寄送至受信者的行動電話,同時系統會自動加入預設的「歡迎」訊息。依照電信消費者保護法規定,禁止以自動系統向使用者發送未得同意的簡訊、傳真或是撥打電話,違反者每一行為將被求償500~1500美元。因此本件若主張成立,雅虎將面臨每則訊息最高1500美元的損害賠償。 雅虎雖然主張該等訊息並非電信消費者保護法所禁止的擾人、極端巨量的通信,僅為對接收者已經收到來自其他發送者訊息的提醒而已。同時雅虎也主張若肯認該等團體訴訟,將導致損害賠償數額與原告所受損害不相當,而引發後續訴訟。法院並不接受雅虎的主張。現階段雅虎對法院的決定拒絕評論。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。