日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。
新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。
新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。
國際藥品採購機制(UNITAID)為協助開發中國家取得價格可負擔的人類免疫缺陷病毒(Human Immunodeficiency Virus,HIV)及愛滋病(Acquired Immuno-deficiency Syndrome,AIDS)用藥,2009年12月時即宣布成立「藥品專利聯盟基金會」(Medicines Patent Pool Foundation,MPPF),提供5年約442萬美元作為促進各大藥廠投入專利於所組之藥品專利聯盟(Medicines Patent Pool,MPP)之經費。去(2010)年7月,MPPF在瑞士登記成立後,立即展開與藥廠協議將其專利授權給MPP,以及同意MPP再授權給其他藥廠生產製造相關藥品之行動。 經過近1年努力,今(2011)年7月,MPPF終於與第一家美國藥廠Gilead Sciences達成授權協議,將旗下的Tenofovir(此為B型肝炎治療用藥)、Emtricitabine、Cobicistat、Elvitegravir及前述藥品固定劑量之單一藥丸產品Quad,授權給MPP再利用。接下來,MPP預計還要繼續向Abbott Laboratories、Boehringer-Ingelheim、Bristol-Myers Squibb、Merck & Co、Roche、Tibotec / Johnson & Johnson及Viiv Healthcare等藥廠爭取授權。 根據Gilead藥廠授權協議,MPP得以無償、非專屬、不可轉讓方式製造、使用、邀約販賣及販賣前述藥品,並將之再授權給印度學名藥廠;合法的被再授權人(Sublicensee)得出口及販賣其藥品,並支付3-5%權利金,但被再授權人若是為12歲以下兒童病患開發液體狀、可分散之兒科醫學劑型配方時,則可例外無須支付權利金。雖然Gilead藥廠之授權協議在內容上仍有諸多值得檢討之處,例如只限授權給印度學名藥廠、提供臨床試驗階段之Cobicistat、Elvitegravir及 the Quad藥品,雖確實可使開發中國家最快速度享受到最新的有效藥,但不免會引起是否涉及開發中國家新藥人體試驗之揣測。但無論如何,MPP成功獲得Gilead藥廠之授權,除打破外界先前對於MPP能否實際說服商業藥廠為公益目的加入之質疑,藉由雙方所訂之對象、範圍、權利金與例外等授權條件,更能明確看出MPP日後實際運作將採之方式。
因應巨量資料(Big Data)與開放資料(Open Data)的發展與科技應用,美國國會提出「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act)美國國會議員Markey與Rockefeller於2014年2月提出S. 2025:「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act),以促進對於消費者保護,與資料仲介產業發展間的平衡。該草案預將授權「美國聯邦貿易委員會」與各州據以監督與執行。 該草案對「資料仲介商」(以下簡稱Data Broker)加以定義為係以銷售、提供第三方近用為目的,而蒐集、組合或維護非其客戶或員工之個人相關資料的商業實體;更進一步的禁止Data Broker以假造、虛構、詐欺性的陳述或聲明的方式(包括提供明知或應知悉為偽造、假造、虛構、或詐欺性陳述或聲明的文件予以他人),自資料當事人取得或使其揭露個人相關資料。 該草案亦要求Data Broker建置及提供相關程序、方式與管道,以供資料當事人進行下列事項: 1.檢視與確認其個人相關資料(除非為辨識個人為目的的姓名或住址)正確性(但有其他排除規定)。 2.更正「公共紀錄資訊」(Public Record Information)與「非公共資訊」(Non-public Information) 3.表達其個人相關資料被使用的時機與偏好。例如在符合一定條件下,資料當事人得以「選擇退出」(Opt Out)其資料被Data Broker蒐集或以行銷為目的而販售。 於此同時,加州參議院亦已於2014年5月通過S.B. 1348:Data Brokers的草案,該草案要求資料當事人擁有檢視Data Broker所持有的資料,並得要求其於刪除提出後10天內永久刪除;當資料一經刪除,該Data Broker不得再行轉發或是將其資料販售給第三人。加州參議院並提案,該法案通過後將涵蓋適用至2015年1月1日所蒐集的資料,且個人於Data Broker每次違反時得提出$1,000美元的損害賠償訴訟(律師費外加)。雖然該草案受到隱私權保護團體的支持,卻受到加州商會(California Chamber of Commerce)與直銷聯盟(Direct Marketing Association)的反對。加州在Data Broker的立法規範上是否能超前聯邦的進度,讓我們拭目以待吧。
美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。