日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。

  新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。

  新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

相關連結
※ 日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7909&no=57&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

德國2015年12月3日通過數位健康法(e-Health Gesetz)

  德國聯邦議會於2015年12月3日通過「健康制度安全數位通訊與應用法」 (下稱數位健康法,Gesetz für sichere digitale Kommunikation und Anwendungen im Gesundheitswesen, e-Health-Gesetz),本法無須經過聯邦參議院同意,最快將於2016 年初生效。   該法係以患者的權益和隱私為中心而制定。其中安全的數位基礎設施將改善健康照護、加強病患的自我決定權。數位健康法要求於全德範圍內,從2016 年中期開始至 2018年中,依法定之資訊技術基礎設施的時間表引進相關技術與設施,在醫療診所和醫院之間全面進行電信基礎設施的連結。   本法案要點摘要如下:   • 最新一代的主資料管理(Stammdatenmanagement) (被保險人主資料(Versichertenstammdaten)的測試及更新) 將提供醫生最新資料和防止醫療給付濫用。這個數位健康卡第一個線上應用,將在2018 年中全面引進。而 2018 年 7 月 1 日起未參加線上被保險人主資料驗證之醫生,其補貼亦將削減。   • 醫療用緊急資料(Notfalldaten)應從 2018 年開始依被保險人意願在數位健康卡上儲存,以避免危險藥物的交互作用。因此,從2016 年 10 月開始,使用三種以上藥物患者,將收到藥物治療計畫(Medikationsplan)。而藥劑師自始即有義務在被保險人變更處方時更新之。從 2018 年開始,用藥計畫可以以電子傳輸方式從數位健康卡卡中檢索。   • 數位健康法將促進電子病歷(Arztbriefe)的推動。病患可以對其主治者告知其最重要的健康資料,並以數位資料形式儲存使用。另外,病患的權益和自主決定是本法重點,患者不僅可自行決定何種醫療資料應以卡片儲存,並可決定誰有權查閱。病患亦得提取卡片中儲存之資料。如血糖測量值、從可穿戴裝置或隨身手圈所量測的資料。   • 為提倡遠距醫療(Telemedizin),從 2017 年4 月開始遠距 x 光診斷評估和從 2017年7 月起,線上視訊諮詢時段納入醫療合約給付中。使病患更易獲取醫療訊息,同時在預後諮詢和監控諮詢中亦能得到醫療服務。   • 為進入遠端醫療時代,必須確保各種 IT 系統可以進行溝通,故須在 2017 年 6 月 30 日前提出互通性指引(Interoperabilitätsverzeichnis),使衛生部門不同的 IT 系統所採用的標準簡明化。   • 智慧手機和其他行動裝置使用健康APP已漸普及,到 2016 年底前應確認,被保險人是否可以使用相關設備來行使他們的醫療資料存取權限以及資料是否能夠相互連結進行傳輸。

替代能源有著落了?!

  國際油價持續飆漲,如何找到替代能源,已成為生技發展的一項重要課題,財團法人生物技術開發中心過去兩年密集和美國德拉瓦州的 Fraunhofer 分子生物科技中心( Fraunhofer USA Ins.- Center for MolecularBiotechnology )技術合作,以微生物發展工業酵素,可取代乙二醇( EG )做為塑膠材料,這項合作已吸引台塑及中油的高度興趣。   生技中心自去年起與美國 Fraunhofer 衍生公司 Athenabio 合作,投入二十萬美元發展工業酵素,以微生物來取代化工製程,開發出一三丙二醇。這項化工原料在西方已被視為取代乙二醇,扮演「生化煉油廠」的典型產品,結合對苯二甲酸( TPA )後,可做為保特瓶等塑膠容器。   除了工業酵素外,生技中心也與美國 Fraunhofer 分支機構分子生物科技中心簽署合作協議,計劃未來兩年內,以植物根部來生產流感疫苗,而以植物來生產流感疫苗的技術,其收成期僅需二至三周,每公斤的植物根部可生產的疫苗約○.二至○.五毫升,同時可省下四億美元投資額的生物發酵槽。此項利用植物扮演製藥廠的構想,該中心算是這項領域的技術領先者,以相同的技術所生產之炭疽疫苗,已獲美國食品藥物管理局( FDA )核准進入臨床( IND ),將進行一期臨床試驗。

台日為促進5G導入創設優惠稅收待遇制度

  日本自民黨(目前執政黨)稅制調查會於去(2019)年12月12日公布「令和2年度稅制改正大綱」,並於同年12月20日經閣議決定,創設促進5G 導入稅制,決定對正在開發通訊網絡的行動通訊廠商,給予優惠稅收待遇。預計於今(2020)年通過「促進特定高端資訊通信等系統普及相關法律(暫定)」,於該新法施行日至2022年3月31日期間,受認定為「導入事業者(暫定)」之法人,導入符合「認定導入計畫(暫定)」之5G系統,取得5G系統設備並將其用於日本國內事業時,可選擇特別抵免取得價格的30%,或稅額扣除取得價格的15%,扣除上限額為法人稅額的20%。   我國於去(2019)年10月24日發布實施「公司或有限合夥事業投資智慧機械或第五代行動通訊系統抵減辦法」,亦規定有國內企業導入5G系統之抵減辦法,適用對象為同一課稅年度支出總金額100萬元以上,不逾10億元為限,可選擇支出金額5%抵減當年度應納營所稅額,或3年內支出金額3%抵減各年度應納營所稅額,抵減上限為當年度應納營所稅額30%,合併適用其他投資抵減時,當年度應納營所稅額50%。   我國與日本均可望透過優惠稅收待遇制度,促進5G 導入。隨著在地化5G的導入,預計可利用於工廠生產線自動控制和農產品效率化生育管理等智慧化資通訊系統,以促進智慧工廠或智慧農業的落地普及。

TOP