日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面

  設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。

  SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。

  研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。

本文為「經濟部產業技術司科技專案成果」

※ 日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7931&no=55&tp=5 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
英國取法美國國防先進研發署研發補助機制,提出先進研究發明署法案

  英國商業、能源暨產業策略部(Department for Business, Energy and Industrial Strategy, BEIS)於2021年3月2日向英國國會提交「先進研究發明署法案」(The Advanced Research and Invention Agency Bill),作為英國政府設立獨立研究機構「先進研究發明署」(Advanced Research and Invention Agency, ARIA)的法源依據,用以補助高風險、高報酬之前瞻科學與技術研究,將仍處於想像階段的新技術、發現、產品或服務化為現實。   本法案授予ARIA高度的自主性,使ARIA得以招攬世界頂尖的科學家與研究人員,規劃最具前瞻性與發展潛力的研究領域提供研發補助;同時也給予相較於其他研究機構更多容許失敗的彈性,並明確指出失敗是前瞻科學研究必然經歷的過程。ARIA對於研發資金的運用將因而獲得充分的自主性與彈性,包含對於研究計畫提供快速啟動基金與其他獎項做為激勵措施,或是依據研發進展即時決策是否延續或中止。   ARIA取法自美國國防先進研發署(Defense Advanced Research Projects Agency, DARPA),美國DARPA在網際網路、GPS等技術研發上的成就,直到近期支持針對COVID-19的mRNA疫苗及抗體療法從而取得重大進展,在在顯示了DARPA模式的可行性與重大影響力,而其成功的關鍵在於高度的自主性、靈活性以及最少的行政程序障礙,因此法案將允許ARIA不受政府採購相關限制、並免於政府資訊公開的義務,以減少行政程序對於研發進程的影響。但ARIA每年度仍須向國家審計署提供年度會計報告以作為政府對其最低限度的監督手段,除此之外,商業部長將有權中止與敵對勢力對象的研發合作或結束特定的研究計畫。

ECODIR之線上爭端解決機制介紹

日本內閣府研議「網路資訊安全判斷基準草案」並將作為未來機關處理共同標準

  日本內閣府網路安全戰略本部(サイバーセキュリティ戦略本部)於2017年7月13日第14次會議中提出對2020年後網路安全相關戰略案之回顧(2020年及びその後を見据えたサイバーセキュリティの在り方(案)-サイバーセキュリティ戦略中間レビュー-),針對網路攻擊嚴重程度,訂立網路安全判斷基準(下稱本基準)草案。對於現代網路攻擊造成之嚴重程度、資訊之重要程度、影響範圍等情狀,為使相關機關可以做出適當之處理,進而可以迅速採取相應之行動,特制訂強化處理網路攻擊判斷基準草案。其後將陸續與相關專家委員討論,將於2017年年底發布相關政策。   本基準設置目的:為了於事故發生時,具有視覺上立即判斷標準,以有助於事故相關主體間溝通與理解,並可以做為政府在面對網路侵害時判斷之基準,成為相關事件資訊共享之體制與方法之基準。   本基準以侵害程度由低至高,分為第0級至第5級。第0級(無)為無侵害,乃對國民生活無影響之可能性;第1級(低)為對國民生活影響之可能性低;第2級(中)為對國民生活有影響之可能性;第3級(高)為明顯的對國民生活影響,並具高可能性;第4級(重大)為顯著的對國民生活影響,並具高可能性;第5級(危機)為對國民生活廣泛顯著的影響,並具有急迫性。除了對國民及社會影響,另外在相關系統(システム)評估上,在緊急狀況時,判斷對重要關鍵基礎設施之安全性、持續性之影響時,基準在第0級至第4級;平常時期,判斷對關鍵基礎設施之影響,只利用第0級至第3級。   本次報告及相關政策將陸續在一年內施行,日本透過內閣府網路安全戰略本部及總務省、經濟產業省與相關機構及單位之共同合作,按照統一之標準採取措施,並依據資訊系統所收集和管理之資料作出適當的監控及觀測,藉由構建之資訊共享系統,可以防止網絡攻擊造成重大的損失,並防止侵害持續蔓延及擴大,同時也將為2020年東京奧運會之資訊安全做準備。我國行政院國家資通安全會報目前公布了「國家資通安全通報應變作業綱要」,而日本以國民生活之影響程度標準列成0至5等級,其區分較為精細,且有區分平時基準及非常時期基準等,日本之相關標準可作為綱要修正時之參考。

日本發布新版之農業資料利用推動報告,並透過資料交換及利用機制確保資料共享及協作

日本農林水產省於2025年9月在智慧農業網站上發布新版之農業資料利用推動(下稱報告),其內容包含2025年通過閣議決定之食材、農業、農村基本計畫,並指出為確保農業數位資料與人工智慧(下稱AI)之間的串聯應用,農業資料合作基礎平台(下稱WAGRI)的建立與資料協作、共有、提供功能是其不可或缺的要素。 報告指出,透過各式農業數位資料的蒐集與整合,諸如過往作物收成量資料、市場價格資料、土壤資料、農地資料、氣象資料等,並經過統合及分析後,可以達到提升作業效率及收益、減少勞動作業時間與器材損耗,以及降低環境負荷之效果。截至2025年9月為止,WAGRI網站上已提供高達223種農業數位資料相關的API,供農業領域從業者介接運用,並作為未來開發農業領域基礎AI模型的前置準備。 此外,報告亦指出WAGRI已於日本全國範圍內蒐集大量的農業數位資料,用以開發農業領域之基礎AI模型,並預計於2026年在WAGRI網站上提供基礎AI模型服務。未來農業領域從業者可透過WAGRI網站提供之基礎AI模型服務,輔以自身之農業數位資料,建立符合自身農業場域特性之特化型AI模型。 然而,報告亦指出不論是農業數位資料的API介接運用,還是將農業數位資料用以開發基礎AI模型,農業數位資料之法制配套仍需整備。因此,除了資料權屬等關係釐清外,報告特別提出於AI開發應用、資料共享之模式下,尚須建立「涵蓋資料整體生命週期之資料交換及利用機制」,包含資料對外公開之選擇權、資料提供之事前同意權、資料安全管理對策,以及資料刪除請求權等範圍,以確保農業數位資料在利用前的安心共享與協作。 我國政府如欲於農業領域發展基本AI模型,除應於全國範圍內蒐集大量之農業領域數位資料外,亦應建立串聯資料整體生命週期之資料交換及利用機制,以降低農業數位資料之間的協作風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP