設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。
SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。
研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。
本文為「經濟部產業技術司科技專案成果」
為加強促進日本相關產業與政府政策對於太陽能和其他再生能源之投資比重,日本下議院(lower house of parliament)日前於8月23日通過綠色法案(目前未有正式名稱,外媒多以Green Bill稱之),該法案近日將由日本上議院(upper house of parliament)進行進一步的確認與審議。目前預計綠色法案和其他相關的配套法律措施將於2012年7月生效實施。 目前日本境內的總電力生產來源中,經由核能發電廠所生產之電力占日本總生產電量之30%,而日本政府預計於2030年將該種核能發電廠所生之電力提升至總生產電量比例之50%。然而,在日本福島於今年(2011)3月遭受地震和海嘯波及之後,其所衍生之核能發電廠輻射外漏事件,促使日本政府對於其現有之核能電廠興建計畫開始進行反思,且日本大眾對於此種原子能量之安全性,及相關的國家能源政策亦產生了質疑聲浪。日前,日本政府在思考其現有的能源政策走向,以及相關現況之檢視後,乃於2011年8月23日由其下議院通過綠色法案。 日本綠色法案的主要目的乃為減少當前日本主要電力生產來源為核能發電之現況,並且達成國際共同協議所訂定之減少溫室氣體排放目標。即便該綠色法案具有促進相關綠色能源電力發電設施的建置率升高,並且加速相關投資市場活絡的連帶效應,然而由於該法案目前針對各項綠色能源的使用收費價格細節尚未加以規範,因此對於未來消費者權益與鼓勵投資者投資各項新興綠色能源設施間之支出費用該如何加以平衡,仍為一個不確定的問題,而有待日後各相關部會加以討論規範。
智慧財產權管理標準之建立-由管理系統標準談起(下) 日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢日本經濟產業省於2024年8月23日發布《IoT產品資安符合性評鑑制度建構方針》(IoT製品に対するセキュリティ適合性評価制度構築方針),以順應國際IoT產品資安政策趨勢,因應日益嚴重的資安威脅。 本制度為自願性認證制度,由情報處理推進機構(情報処理推進機構,簡稱IPA)擔任認證機構進行監督。以IoT產品為適用對象,制定共通因應資安威脅之最低標準,再依不同產品特性需求,制定不同符合性評鑑等級,依評鑑結果進行認證,授予認證標章。不同評鑑等級差異如下: 1.等級一:為共通因應資安威脅之最低標準,可由供應商進行自我評鑑,並以評鑑結果檢查清單申請認證標章,IPA僅會針對檢查清單進行形式確認。 2.等級二:係考量產品特性後,以等級一為基礎,制定應加強之標準,與等級一相同係由供應商評鑑,自我聲明符合標準,IPA僅會針對檢查清單進行形式確認。 3.等級三:係以政府機關或關鍵基礎設施業者為主要適用對象,須經過獨立第三方機構評鑑,並以IPA為認證機構進行認證,確保產品值得信賴。 本制度可協助採購者及使用者依資安需求,選用合適的IoT產品,亦有助於日本與國際IoT產品資安符合性評鑑制度進行協作,達成相互承認,減輕IoT產品供應商輸出海外之負擔。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。