日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面

  設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。

  SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。

  研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。

本文為「經濟部產業技術司科技專案成果」

※ 日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7931&no=55&tp=5 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
美國資通訊設備無障礙使用計畫趨勢觀察

歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

歐盟執委會、成員國和風電企業共同簽署風能憲章,建構法規環境以利風電產業發展

歐盟執委會、26個成員國的能源部長和300多個風能相關企業於2023年12月19日在歐洲風能行動計畫(European Wind Power Action Plan)的基礎上共同簽署風能憲章(European Wind Charter),將有助歐盟執委會、成員國和風電企業互相協調並加速相關行動的執行,優化歐洲風電產業的發展環境。而該憲章主要的6項承諾措施分別為: (1)加速相關許可流程、優先執行修正後的《再生能源指令(Renewable Energy Directive)》,及提供風能的長期發展規劃,以確保(至少在2024-2026年間)充足、穩定且可預期的風能發展管道。 (2)改善及簡化風電競標機制的設計並建立一致性,以促進高品質風機的生產,且能同時具備環保、創新、資通安全和良好勞動條件;在不影響《淨零產業法案(Net-Zero Industry Act)》的立法程序下,於競標設計中納入客觀、透明、非歧視、非依據價格的資格預審或核准標準,特別是關於永續性和韌性、資通安全、商業行為和執行能力,以及民眾參與等要素。 (3)確保簽署單位所提供的商業程序、監管、產品和服務都能滿足如《淨零產業法案》和歐洲風能行動計畫中關於高品質的標準,包含環保、創新、資通安全和良好勞動條件;同時,也承諾將移除歐盟法規上的限制,並透過歐盟層級的工具減少財務風險。 (4)提供明確的競標時程,並採取適當的措施最大化各專案的執行率,包含訂定未執行時的懲罰,以及建立製造商和營運商的長期夥伴關係,提升供給和需求的可預測性,同時減緩價格波動的影響。 (5)透過積極的監管建立公平且具競爭力的國際環境,並考慮採取措施以處理可能的不公平國際貿易行為;在《外國直接投資規則(Foreign Direct Investment Regulation)》和其他適當工具的框架下合作投資風電領域。 (6)擴大風能設備的產製量能以滿足預期增加的風電專案需求,以及強化既有的勞動和工業能力、擴大投資規模,並支持工人技能升級和再培訓,確保足夠的勞動力。

Uber竊取Waymo無人車技術機密一案,法院裁定返還1.4萬筆機密資料

  Waymo是Google旗下發展無人車技術的公司,其員工Anthony Levandowski(以下簡稱Levandowski)於2016年2月離職並成立自動駕駛卡車公司Otto,而Uber於同年8月以6.8億美元併購該公司,Levandowski則任職於Uber的自動駕駛車部門。   Waymo在收到供應商誤發的電子郵件發現內含Uber的光學雷達(以下簡稱LIDAR)電路板工程圖,據Waymo表示,LIDAR是一種發展自動駕駛不可或缺的雷射感測器,該工程圖與Waymo設計的工程圖非常相似,此為工程師投入上千小時並投入數百萬美元研發而成。Waymo因而於今(2017)年2月對Uber提出告訴,主張Uber竊取其營業秘密與智慧財產,並表示Levandowski離開Waymo前曾使用私人硬碟下載公司上千筆機密資料,尚包括數名離職員工亦曾下載機密資料,且目前都任職於Uber。   今(2017)年5月美國加州北區聯邦地方法院依Waymo提出的有利證據,包含Uber明知或應知Levandowski握有1.4萬筆與Waymo智財相關的機密資料仍聘僱其為員工;且有完整紀錄顯示Levandowski離職前曾下載Waymo機密文件。因此裁定要求Uber限制Levandowski與相關員工使用與本案相關的LIDAR技術,且須於今年5月31日前返還Waymo,其中包含會議紀錄和Levandowski與相關員工電話紀錄。惟Uber仍可持續發展其自動駕駛技術,但賦予Waymo的律師及技術專家有權監視Uber未來的商業發展,並要求Uber必須在同年6月前調查Levandowski完整的LIDAR技術書面與口頭溝通紀錄,並提交給Waymo。   另方面,Waymo在此同時也宣布與Uber在美國的主要競爭對手Lyft建立自動車駕駛員的合作夥伴關係,挑戰Uber乘車服務的市場地位。本案將於今年6月7日進行審判程序,後續值得持續關注。

TOP