經產省為了在智慧家庭領域創造新事業,整備相關資料活用環境,蒐集共有及分析從多種多樣機器及服務所實際產出之資料,於2017年8月開始實施實證實驗。在實施前,為了使參加實證之民間公司間,得為資訊合作而完備相關規則及保安對策,於5月24日召開「智慧家庭資料活用環境整備推進事業」檢討會。因物聯網(IoT)的擴大得以蒐集龐大資料,以及現在人工智慧(AI)解析能力提高下,期待在各種領域提高生產效率及創造新的事業模式。特別是在智慧家庭領域,其在「新產業構造願景的中間整理」(2016年4月27日、產業構造審議會新產業構造部會)中,為有力重要領域。因此,以IoT技術等使家庭內機器網路化,活用此一資料,除了使既存事業模式發生變革或創造新事業模式外,也期待可以透過把握製品之使用資訊,而提高產品回收(recall)率,並促進資源回收以及家庭部門節能化等相關社會課題解決上。為此,本事業係以對於家庭內機器網路化及透過此而創造新事業為目標,整備事業環境與社會課題及各主題新事業服務創造相連結,因應每個人的生活模式而使得生活空間客製化成為可能,實現智慧家庭之社會目標。
本文為「經濟部產業技術司科技專案成果」
美國《國際緊急經濟權力法》(International Emergency Economic Powers Act, 50 U.S.C. §1701-1708,下稱IEEPA)是美國總統針對國際經濟局勢,進行多種經濟交易相關限制之法源依據─只要外來任何威脅造成美國家安全、外交政策或者經濟出現隱憂,美國總統即可按IEEPA依職權調查、管制或限制「任何與特定國家的外國匯兌交易、透過金融機構進行任何涉及該國利益的信貸移轉或支付、輸入或輸出外幣或證券;亦可凍結與特定國家或該國人民有關的財產權」。1979年,卡特總統(Jimmy Carter)援引IEEPA因應伊朗人質危機(Iran Hostage Crisis),係迄今最長時間的經濟制裁(sanction);2001年的911空襲事件之後,美國國會大幅擴張IEEPA,同時制裁阿富汗(Blocking Property and Prohibiting Transactions with the Taliban)。近期的中美貿易戰中,IEEPA亦扮演重要角色。舉例而言,2019年5月15日,美國總統川普(Donald Trump)即以IEEPA發布〈行政命令:保護資通訊技術及服務之供應鏈〉(Executive Order on Securing the Information and Communications Technology and Services Supply Chain),並於翌日將華為及其遍布26國的68間子公司列入《出口管制規則》(Export Administration Regulations, EAR)之管制名單。 美國憲法起草時,並無談及緊急權力(emergency powers)之概念,所以在過去的兩個世紀,美國總統僅能個案處理(ad hoc)緊急狀況,國會再後續追認。20世紀以降,美國開始出現緊急權力模式─透過國會立法,將原應由國會代表人民行使的權力(delegated powers)授予總統在緊急狀況下直接行使。復有1976年的《國家緊急法》(National Emergencies Act,下稱NEA),而1977年通過的IEEPA即是依NEA為法源所設。當美國總統行使IEEPA,必須遵守NEA:立即向國會發送緊急命令公告,並且將之發布於聯邦公報(Federal Register),總統亦須闡明其發布該緊急命令所援引之法源依據。《國際緊急經濟權力法》中,公權力對於私經濟的介入,則可溯及第一次世界大戰末期的《1917年對敵貿易法》(Trading with the Enemy Act of 1917),當時出現始料未及的經濟動員(economic mobilization)與制裁。
英國電信市場競爭服務達到700萬線路英國的寬頻市場競爭在透過執行網路元件細分化(LLU)政策後,英國電信公司(BT)的對手競爭公司如Sky或TalkTalk,利用BT擁有的電話銅線,提供競爭通訊服務的線路數已達到700萬。這顯示英國電信管制機關Ofcom的細分化政策(LLU)已見成效。 這項政策係在2005年9月,由BT向Ofcom做出具有法律效力的承諾,Ofcom要求BT分拆成立一個新公司,稱為Openreach,負責向競爭對手提供線路出租的批發服務。Openreach是基於功能分離之實體,提供BT和其競爭對手完全一樣的交易條件,如契約條款、價格、系統和商業關係。 政策實施初期,英國電信市場僅有約12.3萬條細分化線路。多數人只能選擇BT作為寬頻及固網電話服務的供應商。 根據Ofcom的最新研究,目前英國有超過1900萬條寬頻線路。其中70%以上是由BT以外的其他公司提供服務,其中許多服務建立在BT的細分化網路元件的基礎上。 現有超過30家不同的公司,為家庭和小型企業提供非捆綁式(unbundled)服務。這有助於提升寬頻網路普及、降低固網電話的價格。與2005年9月相較,當時僅37%的家庭和小型企業有寬頻網路,現在這個數字是71%。 競爭對消費者而言,也帶來較低的費用。根據Ofcom的研究,在2005年最後一季時,消費者每月平均為寬頻網路服務支出約23.30英鎊。今天,他們為相同的服務每月付出大約13.31英鎊。 因此由零售價格、寬頻普及、競爭業者數量來看,英國的寬頻市場競爭已經達到一個重要的里程碑。
美國大聯盟MLB控告遊戲卡商Upper Deck Entertainment侵害商標權美國大聯盟(Major League Baseball Properties , 簡稱MLB) 日前於美國紐約南區地方法院對美國運動遊戲卡製造商Upper Deck Entertainment (簡稱Upper Deck) 提出商標侵權訴訟,MLB主張Upper Deck於2009年到2010年期間所新製造、銷售、販賣之棒球卡系列上,球員制服上的隊名logo的標示為不當使用,侵害MLB之商標權;MLB並同時聲請暫時禁制令 (preliminary injunction),禁止Upper Deck之經銷商銷售、販賣相關系列商品。 2009年8月,MLB與另一運動遊戲卡製造商Topps簽定商標獨家授權合約,約定Topps為MLB唯一合法授權之美國大聯盟系列之棒球用品製造商,此一行為意謂Upper Deck與MLBP之間長達30年的合作關係宣告終止。故Upper Deck 2009-2010年之最新棒球卡上已未標示MLB之商標,而僅以職業棒球球員穿著該隊制服及棒球帽之肖像,甚至在稱呼球隊名稱時也刻意省略隊名,僅以地名代替,如波士頓紅襪隊(Boston Sox)僅簡稱波士頓(Boston);然而,此舉仍被MLB認為係不當使用MLB商標而提起商標侵權訴訟。Upper Deck稍早僅向經銷商表示,其所製造及販賣之商品並無侵害MLB的商標權,亦無不合法。另,1998年MLB同樣以Pacific Trading Card, Inc.所製造、銷售的運動卡未經MLB商標授權為理由,向紐約法院聲請暫時禁制令,禁止Pacific之經銷商販售相關產品,但紐約法院駁回MLB禁制令之聲請,雖然MLB當時有上訴至第二循廻法院,卻因嗣後與Pacific和解而撤回本件上訴案。故,MLB此次所聲請之暫時禁制令的發展,未必不利於Upper Deck。 目前本案僅MLBP提出聲明,Upper Deck之抗辯尚未公開,MLBP先前與Pacific之商標侵權案以和解終結,本案Upper Deck之使用方式是否侵害MLBP所擁有之30隊美國大聯盟職棒logo及隊名之商標權,將待法院後續判決。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。