越南科技部發布的新通知開始生效,將對當地智財實務有重大影響

  越南科技部(Ministry of Science and Technology)於2016年7月30日發布No. 16/2016/TT-BKHCN通知(以下稱第16號通知),此為越南針對《智慧財產法》第四次修正的通知。今(2018)年1月15日已正式生效。在越南,通知(Circular)主要是作為各主管機關執行法律的指南,而本次發布的第16號通知,便是針對越南《智慧財產法》所做的細部解釋,是了解當地智財實務的重要文件。

  整體而言,第16號通知針對智財的申請程序做了相當多修正。例如,申請人回覆越南智慧財產局官方審查意見(office action)的期限由一個月延長為兩個月。又例如,過去越南智慧財產局針對實體審查的申請案一旦做了核駁處分後,申請人僅能透過訴願予以救濟。根據第16號通知,若申請人能夠針對申請案提出在審查過程中未被考量但可以影響審查結果的新事證,越南智慧財產局則得考量撤回核駁處分。

  此外,第16號通知亦釐清了過去越南在智慧財產各權利別,有關實體認定上的疑慮。一、在「商標方面」,第16號通知修正了越南過去對於著名商標(Well-known mark)的認定方式。在過去,著名商標的狀態可藉由法院判決,或是藉由智慧財產局的認定取得。在本次新修正的第16號通知中,著名商標狀態仍可藉由法院判決取得,但智慧財產局只能在「商標被駁回」的情形下對著名商標進行認定。二、在「專利方面」,第16號通知則是再次強調「用途」不得作為專利的申請標的,釐清了越南一直以來拒絕「用途發明專利」的立場。根據第16號通知,用途並非一項申請標的可主張的必要技術特徵(essential feature),只是單純申請標的之目的或結果而已。三、在「工業設計方面」,第16號通知釐清了越南對於「產品」的定義,指出產品必須要能夠「獨立流通」(circulated independently),始能成為工業設計保護的標的。例如圖形使用者介面(GUI)因其必須依賴手機等載體才能流通,故根據第16號通知無法被認為是能夠申請工業設計保護的「產品」。

  從本次第16號修正可以看出,越南近年來因應智慧財產權的國際趨勢,在法規上做出的回應及釐清。對於在越南從事商業活動的我國廠商而言,建議除了瞭解越南《智慧財產法》外,更應關注越南的通知等下位階法規的狀況及發展。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
相關附件
你可能會想參加
※ 越南科技部發布的新通知開始生效,將對當地智財實務有重大影響, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7958&no=57&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
你可能還會想看
Golan v. Holder: 美國高等法院確認公共領域之外國著作可取得著作權保護

  美國高等法院於2012年1月18日對Golan v. Holder案做出裁定,確認維持將目前在公共領域的外國著作納入著作權保護的聯邦法。Golan v. Holder案之主要爭點為,美國國會於1994年為符合伯恩公約及WTO「與貿易有關智慧財產權協定(TRIPS)」的規定,決議通過讓之前無法在美國取得著作權保護的外國著作可以回溯取得美國著作權,一夕之間近上百萬件於1923年至1989年之間在國外發表的著作在美國不再屬於公共領域,包括了許多經典的電影,名畫及交響樂等,這個法案引起了許多樂團指揮家、表演者、老師、電影檔案保管者及電影發行商等人士的不滿,因為他們將無法像之前一樣無限制的使用這些著作。   美國聯邦地區法院於2009年曾判定認為恢復屬於公共領域的外國著作的著作權違反了保障言論自由的美國憲法增修條文第一條,但高等法院以6:2的多數意見認為,恢復公共領域的外國著作的著作權保護並不違反憲法修文第一條及憲法下的著作權條款。身為著作權擁有者,這個裁定對電影與音樂業者可以說是場勝戰,但對Google建立電子圖書館的計畫則將是個挑戰,Google表示這將使他們無法把近一千五百萬冊書籍的內容公開在網路上提供,並且也會影響到他們已完成電子化的上百萬冊書籍的使用。

基於專利動向分析之專利策略規劃

基於專利動向分析之專利策略規劃 科技法律研究所 法律研究員 徐維佑 2014年12月23日 壹、專利布局策略目的   無論在企業針對新產品開發、或學研機構研究新興技術時,對於研究方向的判斷,皆應善加利用其他競爭公司、學研機構專利動向最新資訊。以各國專利資料庫為基礎,蒐集其他公司、機構的研究領域,或者與研發成果相關的專利等資料而成的專利地圖(patent map),可構築更完整的智財戰略。   欲將研究成果商業化時,販售排他性產品對於競爭非常重要。因此阻止其他公司製造仿冒品、類似品,甚至競爭品,或者防禦其他公司之侵權告訴,皆必須盡早制定對策,亦即必須掌握該技術領域的智財資訊,才能讓研發活動順利推展。 貳、各國政府公開之專利動向分析 一、英國國家專利藍圖分析報告   英國政府於2014年中,依續公告8大重要技術之專利藍圖分析報告[1],認為專利資訊可提供創新活動高價值之分析觀點,因此該國智慧財產局資訊團隊,透過專利申請資訊分析出全球性專利藍圖,幫助其國內企業與民眾瞭解此8大重要技術專利資訊,並將分析結果納入資金挹注之考量基礎。   專利藍圖分析報告之資料,來源為2013年至2014年間全球專利資料庫中專利公開(Published)之資料,以及諮詢英國智財局各專業技術領域之專利審查員之結果。而專利藍圖分析報告之分析內容,包括專利涵蓋範圍、專利申請排名領先群、專利優先權期間、專利合作開發申請圖、專利技術分析等。 二、韓國R&D專利技術動向調查   韓國R&D專利技術動向調查制度自2005年開始,每年度由與研究發展相關的各部會針對其提出之研發工作,提供研發計畫執行階段中,所研發之技術是否已有先前技術,或是與研發技術類似之專利發展情況等資訊,即以該研發領域之技術不被其它國家競爭對手搶先獲得專利權的目標作為研究人員之研究方向。   而專利技術動向調查之研發課題則由韓國專利廳下韓國智慧財產策略院主管之「e專利國[2]」負責調查,提供專利分析結果的綜合報告,提供各部會與各領域別的專利動向、方向與及各種分析報告,內容包含有政府R&D專利技術動向調查報告、國家專利策略藍圖報告、以及專利分析與相關生產報告等。並根據以上報告提供技術領域別研發計畫方向、挑選出將來商業化運用價值較高之專利。 參、代結論   專利動向分析的資訊為一種判斷的依據,儘管由分析報告所顯示的技術範圍中,判斷要進行哪一種研究時,需要的是研究者的經驗與知識,但專利動向分析有助於篩選出可行的研究範圍,尤其在投入國家資源補助科研計畫時,資源更應有效應用於可行的技術領域,而非早已佈滿專利地雷處。   目前產業研發過程缺乏完善專利布局分析。實際生產產品之企業為避免侵權故意,常忽略申請前檢索工作;雖研究前或研究中調查之專利動向分析,並不能保證研究成果的可專利性,然而該工作對於國家、企業之研究發展實屬必要。透過如英國國家專利藍圖分析報告、韓國R&D專利技術動向調查,由國家公開技術領域共通性專利分析報告,對於企業後續進行技術專利布局,或者研究機構擬定研究發展方向,皆會有莫大的助益,並節省相當的時間與人力成本,值得我國參考。 [1] UK Intellectual Property Office, Eight great technologies: the patent landscapes (2014), https://www.gov.uk/government/publications/eight-great-technologies-the-patent-landscapes (last visited: 2014/10/01) [2] 韓國e專利國網頁, http://www.patentmap.or.kr/patentmap/front/common.do?method=main(最後瀏覽日:2014/10/01)。

WiMAX頻譜開放 攪亂一池春水

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP