加拿大參議院交通與通訊委員會提出自駕與聯網車輛政策發展報告與建議

  2018年1月加拿大參議院交通與通訊委員會(Standing Senate Committee on Transport and Communications)向加拿大交通部提出「駕駛改革:技術與自駕車的未來(Driving Change : Technology And The Future Of The Automated Vehicle)」報告。

  報告指出加拿大面臨自駕車可能遭遇之挑戰,並列出提供交通部發展自駕車策略之政策建議。

  其中包含:建議加拿大應成立跨部會單位以整合全國自駕車政策、並整合各地方政府與傳統領域政府透過發展地區模型策略;交通部並應與美國合作,來確保自駕車輛於兩國間運行無障礙;交通部應發展自駕聯網車輛設計的車輛安全指南,指南中應指明製造商於發展、測試與布建自駕車的車輛應有的設計需求,該指南並應持續隨科技發展而更新。

  加拿大政府並應立法授權隱私委員會主動調查與促使製造者遵循「個人資訊保護與電子文件法(Personal Information Protection and Electronic Documents Act)」的權力,並應持續評估聯網車輛的隱私相關規範之需求。

  並應整合利益關係人發展聯網車輛管制框架,特別應包括隱私保護;並應監督自駕與聯網車輛技術競爭之影響,以確保車輛出租公司與其他的延伸市場可持續取得相關營業所需資訊;並應注重加拿大自駕車之測試與發展等對於就業之影響等。

本文為「經濟部產業技術司科技專案成果」

※ 加拿大參議院交通與通訊委員會提出自駕與聯網車輛政策發展報告與建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7974&no=57&tp=5 (最後瀏覽日:2025/12/14)
引註此篇文章
你可能還會想看
日本將數位廣告業者列入特定數位平台之透明性及公正性提升法適用對象

  日本於2022年7月5日閣議決定修正政令將數位廣告(デジタル広告)的大型數位平台(デジタルプラットフォーム)業者列入「特定數位平台之透明性及公正性提升法」(特定デジタルプラットフォームの透明性及び公正性の向上に関する法律)適用對象,修正政令於2022年7月8日正式公布,並預計自2022年8月1日開始施行。   日本於2020年5月27日通過特定數位平台之透明性及公正性提升法(以下簡稱本法),要求特定數位平台業者公開提供服務條件,主動積極採取因應措施並進行自我評估,以提升特定數位平台透明性與公正性,促進國民經濟健全發展。隨著數位平台重要度與日俱增,數位廣告的數位平台企業影響力亦逐漸擴大,甚至將對媒體事業收益結構帶來重大改變。日本於2021年6月18日閣議決定「2021經濟財政營運及改革基本方針」(経済財政運営と改革の基本方針2021)與「成長戰略實行計畫」(成長戦略実行計画),均提出須關注數位市場競爭環境,因應新時代統整數位廣告市場規則,將數位廣告的大型數位平台業者列入本法適用對象,整合數位平台透明性與公平性規則。   本次修正政令列入本法適用對象的數位廣告業者包含:一、日本國內營業額在1000億日圓以上的媒體整合型廣告數位平台。二、日本國內營業額在500億日圓以上的廣告仲介型數位平台。日本期望能藉由統整數位廣告市場規則,解決數位廣告市場的垂直整合問題,同時強化消費者隱私保護。

什麼是瑞士「創業實驗室」(Venture Lab) ?

  科技與創新委員會(Commission of Technology & Innovation,以下簡稱CTI)係瑞士重要之創新推進機構,成立於1943年,2011年新修正之研究與創新促進法實施後,CTI正式從經濟部聯邦職業教育及科技局(Federal Office for Professional Education and Technology, OEPT)獨立出來,成為一個具決策權的獨立機關,直接隸屬於聯邦經濟事務部(Federal Department of Economic Affairs, FDEA)。   CTI為擴大高科技創業並創造研發成果商品化之效益推動創業家計畫。該計畫主要係由CTI出資成立的「創業實驗室」(Venture Lab)來執行。創業實驗室針對大學生及創業家推出了一系列創業推廣及訓練課程,從單日的工作坊、五日之創業實務密集課程到在大學開設的創業學期課程,每一個訓練課程都有專家評審,針對創新構想及商業模式給予參與課程者具有建設性的建議。 資料來源:Venture Lab網站 圖 Venturelab 創業課程

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

加拿大電信主管機關發布新的電信監管政策

  加拿大廣播電視和電信委員會(Canadian Radio-television and Telecommunications Commission, 以下稱CRTC)於去(2016)年12月21日發布電信監管政策(Telecom Regulatory Policy CRTC 2016-496, 以下稱Policy 496),該政策除聲明寬頻連網服務(broadband Internet access services)是基本電信服務(basic telecommunications service, 以下稱BTS)外,同時也透過新基金的設立,矢志達成目標。   新基金欲達成的普及服務目標(universal service objective)為:「所有加國國民,不論在都市、市郊與偏遠地區,都能透過固定通信綜合網路業務(以下稱固網)與行動通信網路業務(以下稱行網)近用語音及寬頻連網服務(Canadians, in urban areas as well as in rural and remote areas have access to voice and broadband Internet access services, on both fixed and mobile wireless networks.)」。Policy 496的發布,顯示CRTC監管架構的重點從原先的有線語音服務(wireline voice services),移轉到寬頻服務(broadband service, 以下稱BS)。因此,新制的BTS定義即含括此兩種服務模式;同時,CRTC也訂定了下列標準以驗證普及服務目標的達成狀況: 1. 加國家用與商用之固網寬頻服務訂戶至少可近用下載速率50Mbps/上傳速率10Mbps之網路(此指實際傳輸速率)。 2. 加國家用與商用消費者,於申辦固網寬頻服務時,有數據用量不受限(unlimited data allowance)的方案可供選擇。 3. 最新部署的行網技術(現為長期演進技術,Long Term Evolution)應不只可於家用、商用用戶端使用,也應盡可能擴及加國主要交通幹道。   新基金除預計為那些尚未符合上述標準之地區(通常為偏遠或落後地區)的相關計畫,於前五年給予總計七億五千萬加幣的資金挹注外,同時也會和現行及未來的公有基金、私人投資互補,並由第三方單位獨立、公平管理。   雖然CRTC於新的電信監管政策訂定的固網下載速率標準較多數國家為高(美國、澳洲25M;歐洲平均設在30M;德國為50M),但截至2015年為止,加國全境已有82%的民眾可接取傳輸速率達50M/10M之固網寬頻服務;因此CRTC主席Jean-Pierre Blais表示,這樣的標準設定其實相當實際。儘管Policy 496的釋出表達了CRTC將以合適的方式達成其政策目標的立場,但BS的普及狀況與偏遠地區的連網障礙是否確實排除,所有利害關係人都扮演重要的角色。

TOP