美國懷俄明州眾議院(Wyoming House of Representatives)於2018年2月19日無異議地表決通過HB0070法案,該法案將鬆綁功能代幣(utility token)於懷俄明州證券法(Securities Act)之限制。該法案將送往參議院,若順利通過並經州長簽署核准,將於2018年7月1日生效,使懷俄明州成為友善的區塊鏈投資環境,預計吸引大量新創事業於該州進行首次代幣眾籌(Initial Coin Offerings, ICO)。
該法案針對功能代幣設有三種要件,僅於符合三種要件者始能作為法案所稱的功能代幣,得免受證券法規管。三種要件分別為:一、功能代幣之開發者和發行者不得將代幣作為投資而行銷;二、該代幣須可作為換取商品或服務之對價;三、該代幣之開發者或發行者不得主動進行附買回協議(repurchase agreement)或任何有意操縱代幣二級市場之價格之協議或策劃。
此外,懷俄明州另有三部有關區塊鏈之法案亦正待審議,包含同樣甫經眾議院通過之HB0019法案,使加密貨幣免受懷俄明州貨幣傳輸法(Money Transmitters Act)規範,有望可使加密貨幣在懷俄明州進行交易或交換。此外,正於眾議院進行二審的HB0101法案預計將修正懷俄明州商業公司法(Business Corporations Act),開放公司得使用區塊鏈來儲存資料並進行內部聯繫。又,尚待眾議院審議的SF0111法案預計使加密貨幣免於受州財產稅法之規範。
作為鄉村音樂發源地的美國田納西州,有著蓬勃的音樂產業,匯聚來自各路的表演藝術工作者,因而對相關從業者的個人公開權(Right of Publicity)保障尤為重視,早在1984年即制訂《個人權利保護法》(Personal Rights Protection Act),確保該權利不會因權利人死亡而消滅,屬於可由他人繼承之財產權,允許繼承人自由轉讓和授權,包含其姓名(Name)、肖像(Image)、形象(Likeness)之權利主張,但被繼承人之聲音仍不在權利主張的範疇。 惟現今AI深偽仿聲技術所生成之音樂亦可能侵害音樂人及藝術家的智慧財產權,因而於2024年3月21日由州長簽署《確保肖像、聲音和圖像安全法案》(Ensuring Likeness Voice and Image Security Act),簡稱貓王法案(ELVIS Act),該法案於3月7日獲得州議會兩黨一致支持,首度明確將個人公開權得主張之範圍擴及至表演者的聲音(NIL+V),其目的是為了應對AI生成音樂的突破性進展,以保護音樂創作人及表演藝術家之權利免受AI技術侵害,這是全美首部禁止他人未經授權使用或重製權利人的聲音以供訓練AI模型或生成深偽內容所制定的法律(註:加州雖已將聲音作為權利保護客體但非針對AI技術之侵害),明確規定第三人在未得本人之同意下,若意圖利用AI深偽技術生成經仿製、偽造或變造的圖片、影音、聲音等數位檔案,而後續冒用本人名義進行公開發表或公開演出詞曲創作人及表演藝術工作者之聲音或影像的行為,則須承擔相應的民事侵權行為責任,以及構成歸類在微罪的刑事犯罪,刑期最高可處11個月又29天的監禁或2,500美元以下的罰金,該法案預計於今年7月1日生效,且僅適用於在田納西州境內的工作者。 該法案所保護之主體除音樂創作人及表演藝術家外,亦包含動畫配音員及串流媒體盛行下廣播與網路節目的播音員(俗稱播客),以確保這類主要仰賴聲音維生的工作者能免於AI仿聲技術而減損其專業價值;另外若有與詞曲創作人或表演藝術工作者締結專屬合約之唱片公司或經紀公司亦為訴訟程序的適格當事人,可代理公司旗下的工作者尋求救濟管道;最後,若利用權利人的姓名(Name)、肖像(Image)、形象(Likeness)或聲音(Voice)屬於法案中列舉的合理使用行為,如基於公益目的、新聞播報、轉化性使用、偶然入鏡或著作之附帶性利用等,則應屬美國憲法第一修正案之保障範圍而非在該法案的規範射程。 除田納西州之外,美國尚有其他39個州提出或正在推動相似的法案,但全美目前仍欠缺統一性的立法;聯邦政府仍尚在研擬如何保護表演藝術工作者個人公開權的階段,日前在田納西州政府今年1月時提出貓王法案的草案後不久,由美國眾議院議員組成的跨黨派小組曾公佈《禁止人工智慧偽造和未經授權的重製法案》(或稱為《禁止人工智慧詐欺法案》),旨在推動建立聯邦層級的框架性立法,以確保個人的聲音或肖像權屬美國憲法第一修正案的保障範圍,而該提案據稱是針對美國參議院去年10月提出的《鼓勵原創、培育藝術和維繫安全娛樂法案》(或稱為《禁止仿冒法案》)的更新及補充,以維護公共利益,創造具有原創性、正當性及安全性的休閒娛樂環境。
德國機器人和人工智慧研究人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。 德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。 解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。
澳洲發布國家身分韌性戰略所謂「身分」(Identity)是「特徵」(characteristics)或「屬性」(attributes)的組合,可讓個人在特定環境中與其他人區分開來,以證明自己的身分,例如出生日期和地點、臉部圖像等。澳洲政府有鑑於數位經濟的快速成長,線上身分驗證比實體身分驗證更為頻繁,促使犯罪人竊取和濫用身分資訊與資格證明(credentials),使得越來越多人面臨網路犯罪和詐欺的風險,澳洲在2021年時更因為身分竊盜事件橫行,造成超過18億美元的經濟損失。 為此,澳洲資料和數位部長會議(Data and Digital Ministers Meeting, DDMM)於2023年6月23日發布「國家身分韌性戰略」(National Strategy for Identity Resilience),以取代2012年國家身分安全戰略(National Identity Security Strategy),宣示澳洲政府加強身分基礎設施和對身分竊盜的韌性與復原力,推動澳洲各州、領地(territory)和聯邦(Commonwealth)採用全國一致的身分韌性方法,使得個人身分難以被竊取,縱然不幸遭竊取,受害人亦能夠輕易自身分犯罪中恢復身分。 該戰略由十項原則組成,包含:(1)無縫接軌的聯邦、州和領地數位身分系統;(2)具包容性的身分辨識機制;(3)個人與公私部門都有各自角色;(4)制定國家實體與數位資格證明標準;(5)建立生物辨識和經同意的身分驗證;(6)便利個人跨機構更新身分資訊;(7)更少的資料蒐集與保存;(8)明確的資料分享協議;(9)資格證明的一致撤銷和重新簽發;(10)明確的問責與責任。搭配短、中、長期的實施規畫,循序漸進地加強與一制化澳洲跨司法管轄區的身分安全管理機制。
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。