日本著作權法第2條第1項第1款規定對著作物定義中,創作性之表現必須為具有個人個性之表現,日本對於無人類行為參與之人工智慧創作物,多數意見認定此種產品無個性之表現,非現行著作權法所保護之產物。人工智慧之侵權行為在現行法的解釋上,難以將人工智慧解釋其本身具有「法人格」,有關人工智慧「締結契約」之效力為「人工智慧利用人」與「契約相對人」間發生契約之法律效果。日本政府及學者對人工智慧之探討,一般會以人工智慧學習用資料、建立資料庫人工智慧程式、人工智慧訓練/學習完成模型、人工智慧產品四個區塊加以探討。日本政策上放寬著作權之限制,使得著作物利用者可以更加靈活運用。為促進著作之流通,在未知著作權人之情況下,可利用仲裁系統。在現今資訊技術快速成長的時代,面對人工智慧的浪潮,日本亦陸續推出相關人工智慧研發等方針及規範,對於爾後之發展值得參酌借鏡。
2009年5月,在日本「智慧財產戰略本部」所屬「以智慧財產進行競爭力強化專門調查委員會」(知的財産による競争力強化専門調査会)下所成立之「先進醫療專利檢討委員會」(先端医療特許検討委員会),針對日本在先進醫療技術領域的專利保護制度進行檢討,其中提出建言,建議修訂專利審查基準,將以下的醫療相關發明類型納入可獲專利保護之發明標的:1.既有醫藥品用法或用量之改良,其可以大幅改善藥物副作用或提升服藥後生活品質,同時其效果超越專家所能預想之程度;2.輔助醫師進行最終診斷之人體有關資料收集方法,例如核磁共振攝影(MRT)或電腦斷層掃描(CT)等技術相關發明。上述建言之後被納入智慧財產戰略本部所公佈之「智慧財產推進計劃2009」(知的財産推進計画2009)中,列為2009年度日本政府應執行之智慧財產權相關重要政策措施其中的一項,而前者便是所謂的藥品服用法發明專利。 這而日本特許廳根據上述政策決議,在2009年8月提出依委員會建議所修訂之專利審查基準修訂草案,而在完成徵詢公眾意見的行政程序後,於2009年11月正式公告成為新版的專利審查基準。 其中在「醫藥發明」部分,新版專利審查基準言明,若醫藥發明其成分與先前技術的醫藥品並無不同,同時適用之疾病症狀亦無不同,但其因為其所揭示的特定用法或用量,致使其在適用於特定疾病時會產生不同之效果時,這樣的發明仍會被認定為具有新穎性。而若此新用法或用量之醫藥發明相較於先前技術,其所產生之更有利效果,為發明當時相關技術領域具有通常知識者所可預期者,則此發明將不具備可專利性要件所要求之進步性,而無法獲得專利保護;反之若此新用法或用量之醫藥發明產生之有利效果,為超出發明當時相關技術領域具有通常知識者所可預期範圍之顯著效果,則此發明之進步性便會被肯認。因此,新版專利審查基準不僅言明了新用法或用量之醫藥發明可專利性要件審查之判斷標準,也明確將此類型之發明納為可受專利保護之標的。
美國政府於2014年初提出幾點重要聲明,加強改善國家專利品質美國總統歐巴馬於2014年初對於美國專利改革及產業創新的規範做進一步的聲明。美國近年來針對專利法改革有許多大規模的法案實施,目的希望能提升整體美國產業,包括2011年通過的美國發明法案(Leahy-Smith America invents Act, AIA),目的希望能讓美國專利系統更加完善,保護專利權人及促進產業創新等目的。然許多專利仍被NPE或是專利蟑螂控訴侵權,反而讓專利權被用來當做專利訴訟的一個工具,花費更多的經費在訴訟及和解上,有違當初白宮要進行專利改革的初衷。 因此歐巴馬在年初為了能鼓勵創新及增加專利系統的品質而發布幾點執行聲明(executive actions): 1、著重prior art的檢索:USPTO開始著重prior art的搜尋,幫助專利審查能更詳盡。 2、增進專利審查人的技術訓練:提供教育專業訓練,讓專利審查人能隨時更新最新的技術,能在審查過程中對於技術上的認知能更專業。 3、Pro brono幫助:USPTO提供pro brono的幫助。許多發明人對於如何申請專利及如何使其專利被妥善保護等規範較缺乏相關資訊、或沒有資金聘請顧問協助此方面保護,因此USPTO會提供教育及實務訓練,讓這些較小的公司或資源較缺乏之發明人的專利得以獲得保護。
科技產業申請租稅減免 國稅局:申報浮濫高科技企業申請促產條例相關租稅減免浮濫,尤其是在可享高額抵減的研發項目上,爭議最多。實務上,人才培育的投資抵減減稅空間較少,頂多幾十萬元或幾百萬元,但研發投資抵減最高可達幾十億元,因此常見的爭議也最多。由於研發費用可提列為費用、又可抵稅,對企業來說效益很高,因此很多公司都先申報為研發費用,等被國稅局查到再說;另將製造、銷售費用列為研發費用的情形不勝枚舉。 依照公司研究與發展及人才培訓支出適用投資抵減辦法審查要點第1點附表,研發支出只有包括全職研發人員薪資等九種支出才能抵減,而且業者須附薪資表及證明文件證明,才能減稅。但因為研發誘因優渥,企業總是先報再說,因此行政法院投資抵減的相關訴訟,十之八九都是國稅局勝訴。根據公司研究與發展及人才培訓支出適用投資抵減辦法第5條規定,公司的研發支出,在同一課稅年度內得按百分之三十抵減當年度應納營所稅額;支出總金額超過前二年度研發經費平均數者,超過部份得按百分之五十抵減當年度應納營所稅,當年度營所稅額不足抵減者,得在以後四年度營所稅額抵減。 國稅局提醒,申請研發減免企業必須提供研究計畫等證明,否則舉證不足反將被國稅局要求補稅,恐衝擊公司當年獲利。一般來說,適用投抵減稅金額愈高的公司,也愈常被選案查核,確保公司沒有僥倖逃稅心理。如果投抵項目涉及大陸地區,像是人才培訓支出,則應依臺灣地區與大陸地區人民關係條例第24、25、25條之1條等法令規定,經主管機關核准,否則也將遭國稅局剔除補稅。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)