考量無人機系統與國家空域系統及有人駕駛飛機的有效協作,除能提升產業效能與生產力外,同時也強化國家公領域安全的管理。基此,美國總統川普遂發布總統備忘錄倡議建立無人機系統整合先導計畫,期能透過該計畫促進創新應用,並以公私協力的方式進行無人機系統與國家空域系統之整合。
美國國家衛生資訊科技協調辦公室(The Office of the National Coordination for Health Information Technology, ONC)於2020年5月公告的「資訊封鎖最終規則(Information Blocking Final Rule)」,於2021年4月5日正式生效。 ONC依21世紀醫療法(21st Century Cure Act)授權,制定有「21世紀醫療法:協同操作性、資訊封鎖與ONC健康IT認證計畫」(21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification Program)最終規則,包含各面向關於新興醫療IT技術之規範,其中特別針對資訊封鎖的相關條文,又稱為「資訊封鎖最終規則」。 21世紀醫療法為了確保病患資料近用權利,在法條中明定禁止資訊封鎖行為。「資訊封鎖」,根據資訊封鎖最終規則的定義,是指健康照護業者或健康資訊技術廠商,包括受認證的健康資訊技術(health IT)、健康資料交換 (health information exchange)或健康資料網絡(health information network),在欠缺法律授權或非屬美國公共衛生服務部(Health and Human Service, HHS)認定合理且必要的情況下,所為之干擾、防止或嚴重阻礙電子健康資料(Electronic Health Information, EHI)獲取、交換及使用行為。但以下八種情況,不適用資訊封鎖最終規則:預防傷害(Preventing Harm)、隱私(Privacy)、安全(Security)、不可行性(Infeasibility) 健康IT性能(Health IT Performance)、內容與方式(Content and Manner)、費用(Fees)、授權(Licensing)。 21世紀醫療法在資訊封鎖章節中規定,資訊封鎖相關條文在資訊封鎖例外類型被定義出來後,始生效力。換言之,在資訊封鎖最終規則生效後,病患將有權依法近用其電子健康資料,資料持有者原則上不得拒絕。值得注意的是,資訊封鎖最終規則生效後至2022年10月6日止,適用資訊封鎖條文的電子健康資料範圍,係以美國協同操作核心資料(United States Core Data for Interoperability, USCDI)中所定義之電子健康資料為準。USCDI,是由ONC主導建立的一套資料標準格式,以統一健康資料交換格式,促進資料流通。2022年10月6日起,資訊封鎖最終規則所指的電子健康資料範圍將不僅只局限於USCDI標準所定義之電子健康資料,將擴及健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)所定義的所有電子健康資料。
猶他州選民詳細資料遭網站公開,引起社會大眾關注據猶他州政府檔案存取及管理法(the Government Records Access and Management Act,簡稱GRAMA),該州選民註冊資料及投票歷史紀錄檔案屬於得公開資訊,據此,猶他州民得給付1,050元美金並填寫申請表,向政府申請取得全州選民數據庫之資料。 上開法令作為申請之依據,UTvoters.com創辦人Tom Alciere透過向該州政府申請並取得該州選民資訊後,建置該網站。透過該網站系統,任何人可查詢該州選民選舉資料。Tom Alciere指出,倘選民認為他們資訊被公布網站上並不合理,他們可以要求移除網站上的資訊,但這些資訊仍被記錄在該州數據庫中,且仍可被公開取得。 該州負責選舉主任委員Mark Thomas指出,倘能證明自身安全因資料遭公開而陷入危險,或具有某些情況如屬政府官員(例如州市長或參議員)等資料,基於安全考量,得移除數據庫之資料。 該州選民認為他們資料如同信用卡被竊一般的遭到洩漏,且不應被公開於網路;該州參議員Karen Mayne亦認為該不合理制度須做改變,政府一方面應鼓勵民眾參與投票,但非在過程中犧牲與公開選民的個人資料。 相關修正案之建議,限制該類資料僅能作為「政治」上的使用,且應排除與網路連結。若違反,則將面臨6個月以上有期徒刑及1,000美元以上之罰金。
美國聯邦民航局發布《先進空中移動執行計畫》,以利全面整合並促進產業安全擴展美國聯邦民航局(Federal Aviation Administration, FAA)於2023年7月18日發布《先進空中移動執行計畫》(Advanced Air Mobility (AAM) Implementation Plan),詳述FAA與利害關係人於短期內實現AAM運作需採取之步驟。 AAM是一個新興航空生態系統,透過創新先進技術與新型航空器,包括電動航空器或電動垂直起降航空器(electric vertical takeoff and landing, eVTOL),提供交通運輸更具效率、永續與公平的選擇機會。不過,本執行計畫所稱之AAM僅適用於有人駕駛之客貨運輸類型。為促進日常相關服務,該計畫以現行飛航程序與基礎設施為利用基礎,並就航空器與飛行員認證、空域進出管理、飛行員培訓、基礎設施開發、安全維護、公眾參與等事項進行處理,以引領產業安全擴展。此外,本計畫還包含可應用於任何場域之計畫指南(planning guide),並臚列關鍵整合目標與順序。本次計畫著重之處簡述如下: (1)運作:飛行員將能按預定飛行計畫駕駛新先進移動航空器往返多地;AAM航空器將盡可能使用機場周圍等級B與C空域範圍內之既有或修正的低空目視飛行規則(Visual Flight Rules, VFR)路線,飛行於城市與大都市地區上空4000英尺(約1219.2公尺)。 (2)基礎設施:營運商、製造商、州與地方政府,以及其他利害關係人將負責計劃、發展與利用直升機場(heliport)或垂直機場(vertiport)基礎設施;起初AAM將運作於既有的直升機場、商業服務機場與通用航空(general aviation, GA)機場,故需針對充電站、停機坪與滑行空間等進行改造與安裝。 (3)電網(Power Grid):電網可能需要升級以供AAM操作;FAA與美國國家再生能源實驗室(National Renewable Energy Laboratory, NREL)簽署機構間的協議,以確定航空器電氣化(electrification)對垂直機場、直升機場或機場電網的影響。 (4)安全:美國國土安全部(Department of Homeland Security, DHS)將確定必要的AAM安全類型;美國運輸安全管理局(Transportation Security Administration, TSA)與FAA亦評估基於先進技術的使用與操作協定(operational protocols)而提高資安要求之需求。 (5)環境:FAA將斟酌AAM運作的環境影響,包括噪音、空氣品質、視覺干擾及對野生生物的破壞等因素。 (6)公眾參與:為更了解公眾對AAM運作的擔憂(包括噪音與緩解措施),FAA將與機場、地方、州及社區進行合作;許多利害關係人(如AAM營運商、機場與垂直機場營運商)將於公眾參與中扮演重要角色。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。