英國海外屬地直布羅陀,針對透過與日俱增的首次發行代幣(Initial Coin Offerings, 簡稱ICO)募集商業活動,早在2017年9月,其金融服務委員會(Gibraltar Financial Service Commission, 簡稱GFSC)已公布官方聲明,警告投資人運用分散式帳本技術(Distributed Ledger Technology,簡稱DLT)之商業活動,如:虛擬貨幣交易或ICO等具高風險且投機之性質,投資人應謹慎。
GFSC又於2018年1月公布「分散式帳本技術管制架構」(Distributed Ledger Technology Regulatory Framework),凡直布羅陀境內成立或從其境內發展之商業活動,若涉及利用DLT儲存(store)或傳輸(transmit)他人有價財產(value belong)者,均須先向GFSC申請成為DLT提供者(DLT provider),並負擔以下義務:
GFSC和商業部(Ministry of Commerce)又於2018年2月聯合公布,將於第二季提出全世界第一部ICO規範,管制境內行銷(promotion)、販售和散布數位代幣(digital token)行為,強調贊助人須先授權(authorized sponsor),並有義務確保遵守有關資訊揭露和避免金融犯罪之法律。
2017年美國統一法律委員會(Uniform Law Commission, ULC)於2017年9月公布「統一虛擬貨幣事業監管法」(Uniform Regulation of Virtual Currency Business Act, 以下簡稱VCBA)全文、總說明以及利害關係人意見,對於虛擬貨幣(virtual currency)提供管制架構,囊括虛擬貨幣定義和適用範圍、營業執照要求、跨州互惠原則、消費者保護、網路安全、反洗錢和對進行虛擬貨幣商業活動者之監管等重要問題,作為各州相關立法參考。迄今美國夏威夷州和內布拉斯加州分別向州議會提案,朝向採用VCBA作為該州虛擬貨幣管制參考規範之方向討論。
微軟將針對美國政府是否對其在都柏林之主機具有管轄權提出上訴在2014年4月時,美國裁決法官James Francis就聯邦檢察官的申請,依據1986年的「電子通訊隱私法」(Electronic Communications Privacy Act, “ECPA”)第2703條第a項之規定,針對微軟客戶的e-mail對微軟公司發出了搜索令。然而,該搜索令所要求的e-mail資料儲存在微軟位於愛爾蘭都柏林的資料中心,因此微軟以美國政府對於愛爾蘭並無司法管轄權為由,拒絕配合執行該搜索令,並且對發出搜索令的法官提出異議。但是Francis法官認為這並不是「域外搜索令」(extraterritorial search warrants),並指出在網路互聯的世界中,重點是對資料的控制,而不是「電子財產」的所在位置,於是拒絕了微軟的異議。 於2014年7月,微軟向紐約曼哈頓地方法院再度針對該搜索令提出異議,主張如果美國法院依據「電子通訊隱私法」要求資訊服務提供者提供位於愛爾蘭主機的客戶電子郵件資料,應透過美國與愛爾蘭政府的「多邊司法互助協定(Mutual Legal Assistance Treaty,“MLTA”)」來進行。但地方法院做出以下的裁決:1.在網路世界,電子財產之地理位置不是絕對的;2. 「電子通訊隱私法」第2703條a項所稱之搜索令並不是傳統上的搜索令,而是「搜索令」與「傳票」性質混合的命令,功能是為了讓網路服務業者(Internet Service Provider, “ISP”)提供所擁有的資料給法院;3.國會應無意透過繁瑣的「司法互助協定」來取得位於海外的電子證據;據此,地方法院維持Francis裁決法官的裁決,並且判定微軟藐視法庭。 微軟隨後在2014年12月,以地方法院使用了錯誤的法律理由、沒有根據的推斷立法目的、疏漏重要判決先例的援引、逾越國會立法的優先權並且誤解了「網路流通」的概念等理由,向美國第二巡迴法院提出上訴。 目前蘋果、AT&T、思科、Verizon以及其他科技公司都支持微軟的上訴,認為如果認可美國政府對於本國公司在境外所設置的資訊主機有司法管轄權,將會嚴重衝擊美國以外國家的資料保護法。此案目前仍在法院審理中。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。