英國商業、能源和產業策略部(Business, Energy and Industrial Strategy, BEIS)於2018年4月17日發布公眾諮詢,議題為「最大化第一代(SMETS1)智慧電表的相容性(interoperability)」,該諮詢將截止於2018年5月24日。
英國對於SMETS1的推廣分為兩階段進行,基礎建設階段始於2011年,主要安裝階段則於2016年11月開始,國家數據及通訊供應商-資料通訊公司(Data Communications Company, DCC)自此階段開始營運,直至2020年智慧電表建置完成。
因現今由各能源供應商使用自身資料及通訊設備裝設第一代智慧型電表,造成消費者無法任意更換能源供應商之情況。對此,英國政府之長期政策目標雖為SMETS1最終可全數透過DCC進行運作,然由於現階段尚未強制能源供應商使用DCC所提供之服務,使用SMETS1的消費者仍無法自由的轉換能源供應商。
本文件提出了兩個方案向公眾諮詢:
英國政府期透過更完善的政策規劃改善現階段SMETS1透過個別能源供應商之數據及通訊系統運作之情況,以確保SMETS1之智慧模式於消費者更換供應商時能維持正常運作,使消費者可確實獲取改用智慧電表之利益。我國於2015年已開始推動低壓智慧電表建置,英國面臨之問題值得借鏡,政府於推廣低壓智慧電表之同時應注意智慧電表基礎設施之相容性,以增進低壓智慧電表建置效率及降低建置成本。
本文為「經濟部產業技術司科技專案成果」
聯邦採購規則(Commonwealth Procurement Rules)為澳洲財政部(Australia Government Department Of Finance)依公共治理、績效及課責法(Public Governance, Performance and Accountability Act 2013)授權所訂定之採購規範。澳洲財政部於2024年發布新修正之聯邦採購規則,並於同年7月1日生效。 新修正之聯邦採購規則除維持現行架構及核心精神外,另增訂聯邦供應商行為準則、擴大經濟效益評估、促進性別平等等措施,同時也擴大對中小企業之支援與協助。 為確保中小企業參與政府標案之公平競爭,新修正之聯邦採購規則要求澳洲政府在評估採購案時應適當提供中小企業競爭機會,並以符合最佳性價比之原則考量下列事項: 一、 向具有競爭力之中小企業進行採購之效益; 二、 中小企業參與競標之障礙,如投標之資金成本; 三、 中小企業之能力及對地區市場之貢獻; 四、 增加潛在供應商數量以最大化競爭所產生之效益,包含在合適之情況下,將大型專案拆分為數項小型專案。 此外,新修正之聯邦採購規則要求聯邦機構提高對中小企業採購之比例。依新修正之聯邦採購規則第5部分,超過澳幣10億元之採購契約,採購總金額中至少25%應係向中小企業採購,較修正前提高5%;超過澳幣2,000萬元之採購契約,採購總金額中則至少應有40%係向中小企業採購,較修正前提高5%。 本次修正是考量中小企業對於澳洲經濟有所貢獻,因此提高中小企業之採購比例,預計修正後亦可讓更多中小企業獲得採購機會。
何謂「工業4.1J(Japan Industry 4.1J)」?自德國「工業4.0」,開啟所謂第4次工業革命以來,各國政府皆相繼投入資源進行相關計畫,如美國之「先進製造夥伴計畫(Advanced Manufacturing Partnership,AMP)」中國大陸之「中國製造2024」,以及我國之「生產力4.0」等等。 而日本不同於上述其他國家,日本版的工業4.0稱為「工業4.1J」,該計畫並非由國家來主導,而係由民間公司Virtual Engineering Community(VEC)及NTT Communications於2015年3月10日所啟動的一項實證實驗,旨在確認「工業4.1J」之各項技術要件,並且該項目成果非僅提供給VEC之會員,將對所有企業及公眾公開。而所謂的「4.1」表示安全級別比工業4.0更高一級,「 J」則表示源自於日本(Japan)。 日本之「工業4.1J」的運行架構說明如述:首先,將會利用控制系統蒐集相關數據;第二,在雲端平台上記錄及累積數據資料;第三進行即時分析;最後則是透過專家進行事件檢測、分析故障原因並恢復生產、提出安全改善建議等等。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
聯合國教科文組織發布《人工智慧倫理建議書》草案聯合國教科文組織於2020年9月發布《人工智慧倫理建議書》草案(First Draft Of The Recommendation On The Ethics Of Artificial Intelligence)(下稱建議書),以全球性的視野與觀點出發,為第一份全球性關於人工智慧倫理的建議書,試圖對人工智慧倫理作出框架性規定,對照其他區域性組織或個別國家人工智慧倫理準則或原則,著重之處稍有差異。該建議書係由組織總幹事Audrey Azoulay於2020年3月任命24位在人工智慧倫理學方面之跨領域專家,組成專家小組(AD HOC EXPERT GROUP, AHEG),以《建議書》的形式起草全球標準文書。 其主要內容提到六大價值觀:(一)人性尊嚴(Human dignity)、(二)基本人權和自由(Human rights and fundamental freedoms)、(三)不遺漏任何人(Leaving no one behind)、(四)和諧共生(Living in harmony)、(五)可信賴(Trustworthiness)、(六)環境保護(Protection of the Environment)。其中尤值關注處在於,建議書除強調人工智慧的技術、資料及研究需要進行全球範圍的共享外,相當重視世界上所有的國家及地區在人工智慧領域是否能均衡發展。特別在六大價值觀中提出「不遺漏任何人」觀點,也同時呼應了聯合國永續發展目標(Sustainable Development Goals, SDGs)的倡議。在人工智慧技術發展過程中,開發中國家(global south)及相對弱勢的群體是相當容易被忽略的。人工智慧蓬勃發展的時代,若某些群體或個體成為技術弱勢者,不僅在技術發展上有落差,更可能使人工智慧系統容易產生歧視、偏見、資訊和知識鴻溝,其後更將導致全球不平等問題的挑戰。 由專家小組起草的建議書草案已於2020年9月提交給聯合國成員國,作為對建議書的初步報告。該報告將提供給各會員國,並同步提交給預定於2021年召開的政府專家委員會,最後預計於2021年底的提交聯合國教科文組織大會。