美國加州北區聯邦地方法院,於去年(2017年)12月5日做出關於雇員刪除其由公司提供電腦中與公務無關資料是否屬電腦犯罪之判決(United States v. Zeng, 4:16-cr-00172(District Court, N.D. California. 2017).)。
該案情為曾(Zeng)氏為避免其竊取自家公司商業機密行為被揭發,而逕自刪除其在公司提供筆記型電腦內之相關資料。而嗣後仍然被公司發現並報案,於此偵查單位FBI則以曾氏違反電腦詐欺及濫用法案(Computer Fraud and Abuse Act,下稱CFAA)中「未經授權而毀損他人電腦(18 U.S.C. § 1030(1984).).」以美國政府名義(下稱控方)起訴曾氏刪除其犯罪證據之行為。
對於該控訴,被告曾氏以被刪除之電子紀錄與其業務無關,非為公司所有財產為由作為抗辯。此外曾氏同時以其他判決主張毀損電腦之定義應係指由外部傳輸行為所致(如駭客行為),電腦使用者自己刪除行為應不包含之,以及控方未舉證其刪除行為將導致公司有不可回復或無法替代之損害作為抗辯。於此,控方則以刪除行為不應以內容而有所區分作為回應。
在審理期間,承審法官多納托(Donato)氏除參酌控辯雙方證詞外,並特別詢問控方律師指控內容是否會對一般大眾造成其在公用電腦中刪除同類資訊上之顧慮。而控方則以曾氏行為屬特殊情況作為答辯。最後,多納托氏則以控方主張將造成社會恐慌以及控方未提出被告刪除資料行為究竟對公司有何實際損害,判決被告無罪。
寢具零售業者Snooze坦承,其於2008年10月所進行的「雙價標示」廣告活動中,將某些商品的價格以「原價 /現價」的形式加以呈現,此種行為可能誤導或欺騙消費者,而違反了貿易行為法(Trade Practices Act 1974, TPA)。 經澳大利亞公平競爭和消費者委員會(Australian Competition & Consumer Commission, ACCC)稽核Snooze的「雙價」廣告後,Snooze坦承此一活動中所標示之「原價」僅是參考公司內部所設定的建議零售價格,而不是於活動開始前在市場上經過一段合理銷售期間的真實價格。Snooze已同意對所有已知購買產品的客戶提供一封道歉信及50澳幣的購物禮券。 ACCC主委Graeme Samuel指出:「廣告中所出現的原價必須是先前於一段合理期間內實際所出售的真正價格。」基此,ACCC已提供最新的雙價廣告的規範指南,規範之宗旨在於,以此種廣告活動進行優惠行銷時,不得以比較價格之方式傳遞錯誤的訊息,該優惠必須是實質上的確對消費者有利之價格。而依據下列之標準可判斷廣告是否違反貿易行為法: 1.優惠方案必須真正有提供優惠:提供價格比較時,該較高的價格應為實際曾用以銷售之價格,且於考量所有相關因素後,仍得認為該優惠的確存在。而該優惠產品也必須是在高價時也很容易被取得之狀況,才能確保該優惠並非一誤導之行為。 2.優惠價格應為一暫時的價格:以「雙價」方式促銷時,該優惠價格存續之期間不得比原價更長,否則即有誤導消費者之嫌。 3.廣告中的較高價格乃為實際曾於一合理期間內之銷售價格:該較高價格不得從未或於過短期間內作為實際銷售之價格,而判斷何謂合理期間可參考下列三種因素:(1)預期該商品銷售的時間長度(2)商品價格之正常波動情形為何(3)「雙價」促銷活動的時間長短。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
5G汽車協會發布《先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖》5G汽車協會(5G Automotive Association, 5GAA)於2020年9月9日發布「先進駕駛案例-聯網技術與無線電頻譜需求之遠景路線圖」(A visionary roadmap for advanced driving use cases, connectivity technologies, and radio spectrum needs),提供車聯網技術與產業利益相關者對於未來遠景之綜整觀點。 白皮書著重於結合通訊科技之先進駕駛系統,具體描述先進駕駛系統與連結通訊技術在全球發展的現況與展望外,同時呼籲各國應提供車聯網(V2X)應用上足夠的無線通訊頻譜,以涵蓋接下來蜂巢式車聯網(C-V2X)、專用短程通訊技術(Dedicated Short Range Communications, DSRC),及5G-V2X之通訊技術普及,指出汽車與電信等全體利害關係產業共同合作已是趨勢,以確保整體車聯網交通獲得必要的投資與創造新的商機,更有利發揮車聯網真正效益。希冀運用車聯網技術增進未來道路交通之安全性、改善交通效率、降低環境生態之衝擊,並提升駕駛舒適性與整體運輸環境。迄今,全世界高達近2億部通訊聯網車輛於道路上行駛,透過技術得以交換交通與路況資訊,而具備蜂巢式通訊資訊能力之車輛數亦日益增加,證明各國已逐步完備基礎通訊技術與相關基礎建設之布建,而未來5G車聯網更將立基於此,進一步聚焦於運用5G-V2X提升駕駛效率與安全,技術上包括整合最新晶片組與模組的車載設備(OBU)、路側設備(RSU)、智慧型手機,提出感測器共享與協同操控等先進駕駛應用案例。 此外,白皮書更對車聯網行動通訊之頻譜提出建議,概述在國際數位交通運輸體系下,車輛、用路人、路側設備及智慧運輸系統基礎設施,應與蜂巢式網路之通訊協調,共同使用5855至5925MHz中低頻段之通訊頻譜,以提升無線頻譜的運用效益、行動網路涵蓋率與通訊之安全性。而欲實現端對端之車聯網與發揮車輛連網的真正效益,亦需為專用短程通訊技術在5.9GHz提供足夠的頻段分配,其中基本安全應用需要10~20MHz,先進駕駛應用則額外還需至少40MHz,並提供路側設備低延遲性網路服務,以利資訊即時傳輸,白皮書更強調基本和先進駕駛系統之頻譜需求差異將涉及安全性之問題,不可輕視。
美國佛羅里達州「基於保險目的之基因資訊法」最新修正於2020年7月1日正式施行美國佛羅里達州州長於2020年6月30日簽署「基於保險目的之基因資訊法」(Genetic Information for Insurance Purposes)法律修正案,並於2020年7月1日正式生效施行。本次「基於保險目的之基因資訊法」修正重點有二: 將「人壽保險」和「長期照護保險」保險人納入「禁止僅根據個人基因資訊即取消、限制、拒絕承保或設定不同保險費費率」之列; 明確規定醫療保險、人壽保險及長期照護保險之保險人,不得基於保險目的,向要保人、被保險人索取基因檢測結果,或要求要保人、被保險人須完成基因檢測後方同意核保。 同時,本次「基於保險目的之基因資訊法」修正理由亦明確說明:禁止醫療保險、人壽保險及長期照護保險之保險人利用基因檢測結果,並非禁止保險人依據醫療紀錄和醫療診斷結果進行核保或計算保險費費率,以此釋疑保險人對此次修正之擔憂。 美國聯邦參議院於2008年即通過「基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008, GINA),惟「基因資訊平等法」僅禁止醫療保險保險人利用基因資訊進行核保,並未禁止其他類型之保險人。美國佛羅里達州本次修正「基於保險目的之基因資訊法」將人壽保險和長期照護保險一併納入規定,是全美首次擴大禁止利用基因資訊進行核保之保險類型。