美國加州北區聯邦地方法院,於去年(2017年)12月5日做出關於雇員刪除其由公司提供電腦中與公務無關資料是否屬電腦犯罪之判決(United States v. Zeng, 4:16-cr-00172(District Court, N.D. California. 2017).)。
該案情為曾(Zeng)氏為避免其竊取自家公司商業機密行為被揭發,而逕自刪除其在公司提供筆記型電腦內之相關資料。而嗣後仍然被公司發現並報案,於此偵查單位FBI則以曾氏違反電腦詐欺及濫用法案(Computer Fraud and Abuse Act,下稱CFAA)中「未經授權而毀損他人電腦(18 U.S.C. § 1030(1984).).」以美國政府名義(下稱控方)起訴曾氏刪除其犯罪證據之行為。
對於該控訴,被告曾氏以被刪除之電子紀錄與其業務無關,非為公司所有財產為由作為抗辯。此外曾氏同時以其他判決主張毀損電腦之定義應係指由外部傳輸行為所致(如駭客行為),電腦使用者自己刪除行為應不包含之,以及控方未舉證其刪除行為將導致公司有不可回復或無法替代之損害作為抗辯。於此,控方則以刪除行為不應以內容而有所區分作為回應。
在審理期間,承審法官多納托(Donato)氏除參酌控辯雙方證詞外,並特別詢問控方律師指控內容是否會對一般大眾造成其在公用電腦中刪除同類資訊上之顧慮。而控方則以曾氏行為屬特殊情況作為答辯。最後,多納托氏則以控方主張將造成社會恐慌以及控方未提出被告刪除資料行為究竟對公司有何實際損害,判決被告無罪。
美國音樂授權平台營運觀察─以BMI為例 資策會科技法律研究所 法律研究員 丘瀚文 104年10月22日 壹、前言 我國著作權法採「創作保護主義」[1],於著作完成之時,立即取得著作權保護,惟亦因如此,實務上難以證明何人為著作權人,常使利用人鋌而走險非法使用著作,使我國著作權流通、發展受到限制。如何讓著作人可以安心授權著作、利用人得以透過合法授權管道,簡單的取得授權,國外已有透過建立著作權授權平台來解決問題的先行實例。本文為研析我國著作權授權平台可行之營運方式、授權契約、費用計算方式,故觀察分析美國第二大音樂授權平台Broadcast Music Inc.(以下簡稱BMI),之特色,希望對我國著作權授權平台建立,有所助益。 貳、BMI音樂授權平台介紹 一、BMI音樂授權平台介紹 American Society of Composers Authors and Publishers(以下簡稱ASCAP)是美國最大的音樂授權平台,自1914年成立以來,凡是以公開播放方式利用音樂著作皆須向ASCAP支付授權費用,長久壟斷音樂授權市場[2]。在1940年ASCAP大幅提高授權費用後,以美國廣播協會為首廣播業者,為了因應ASCAP之調整價格,便聯合了500多家廣播公司自行組織了BMI進行抵抗,並蒐集大量非ASCAP管理之音樂供廣播業者利用,但由於後續運作獲得許多利潤,因而繼續經營。 美國司法部於1941年對ASCAP提出反托拉斯訴訟,結果達成和解,之後又於2001年司法部再度與ASCAP達成協議,完成了第二最終修正裁判(Second Amended Final Judgement),該協議讓司法部得藉司法監督,去控制ASCAP授權音樂費率於一定額度內,使BMI跟ASCAP能維持競爭關係。上開原因使BMI能慢慢發展成美國第二大音樂授權團體。 二、BMI授權方式觀察 BMI授權方式分為兩種,一為非即時性授權契約,其提供著作利用人定型化授權契約,但需經由傳真、客服確認時間,故不具有授權即時性;此一類型又區分為概括授權和單一節目授權兩種形式;二為即時性線上授權契約,利用BMI自行創設之數位授權中心,經線上填入資料、金融轉帳後,即可立即獲得授權,惟目前依網頁介紹觀察,授權對象僅限網站[3]。下列即分述兩種授權方式。 (一)非即時性授權契約 BMI非即時性授權契約分為媒體授權合約(Media Licensing)和一般授權契約(General Licensing)等兩大類型,媒體授權合約主要以公開播放業者為授權交易對象,並區分概括授權與個別節目授權;概括授權即繳納年費後不限次數使用,而個別節目授權則限定特定節目使用,如需在其他節目使用則需另外繳納授權費。 一般授權契約對象則多是廣播以外其他行業,如遊樂園、舞廳、餐廳、政府機關、健身俱樂部、手機…等,其使用授權費率皆不同,利用人填入行業內容後,該授權系統會線上提供與該行業相關授權契約內容供利用人參考,利用人填寫後可上傳至BMI管理中心即可完成授權作業[4]。不過亦非所有行業BMI均提供授權契約範本,仍有部分如餐館等,尚需使用人自行連絡BMI代理人方得進行授權。 以零售商(Retail Establishments)為例,本文登入BMI授權系統,並點選「Apply for License」按鈕,即出現下載授權契約選項,其內容包含[5]:有人對使用方提出訴訟,其訴訟標的關於BMI所提供授權服務,BMI將會負責損害賠償部分。使用人若想結束或轉讓生意,應於30日email至licensing @bmi.com,BMI會將授權金額重新計算,並寄送於使用人。 費用計算上BMI對每個行業皆有不同「計算基準」,據此計算出授權費用。例如零售商是以「場地大小」為計算基準;2000平方英呎以下零售商撥放一般音樂,授權費用為一年為227.6美元,播放具有視覺性音樂(MV),授權費用為一年307美元。計算基準是隨行業不同而有所變化,例如健身房則與零售商相異,其一年最少費用為311美元,費率亦非以「場地大小」單價計算,而是用「會員數量」作計算基準,並區分音樂是否使用於健身課程,而有不同費率;用於健身課程則一個會員0.279美元,非用於健身課程則一個會員0.195美元[6]。 最後,申請人應將此一表格掃描後做成電子檔,並藉由BMI網頁的上傳功能,上傳至BMI管理中心,中心審核後並確認匯款無誤,即會通知申請人開放授權[7]。 (二)即時性線上授權 BMI即時性線上授權是透過「數位授權中心」(Digital Licensing Center)進行,和非即時性一般授權契約不同,著作利用人只須登入該系統,線上填妥相關利用資訊,並以信用卡、線上轉帳等方式給付授權費用,即得線上完成與BMI締結授權契約程序。BMI將此一授權方式簡化為線上處理,避免授權契約雙方往返溝通繁雜手續,並具有即時性,是更為便利的交易模式。 x數位授權中心有兩種計價方式,總收入計算法與網頁流量計算法。總收入計算法是將網站一定比例收入計算為音樂授權金額。網頁流量計算法則是依據網頁上的流量為基準計算音樂授權金額[8]。而BMI將網站使用區分為三類:1.音樂網站2企業網站3.非營利網站,三者會讓使用者選擇計價方式不同。 舉例來說,企業網站、非營利網站關於音樂使用,其音樂使用與網站業務目的無關,音樂使用僅為提升形象,故不宜使用總收入計算法,應採網頁流量計算方式會較為節省[9]。簡言之,音樂使用與網站業務目的相關,則多使用總收入計算法,使用音樂與網站業務目的無關,則多使用網頁流量計算法。而網站可對財政報告進行分析,並選擇最經濟的方案,並可在一年中進行四次的變更,以符合網站商業運作模式。 參、結論 藉由觀察國外著作權平台授權方式並參考營運模式,對於我國類似平台建置營運提出三點或許可以借鏡之建議: 一、依行業區分不同授權標準 BMI之授權契約多樣化,並以行業做為區分標準,滿足不同需求,此區分各種行業不同收費方式,值得借鏡。例如廣播業者與零售商播放音樂軟體,使用權利雖可能皆為公開播送權,但播放時間、地點、影響程度可能皆不相同,如一律依使用權利態樣定收費標準,似有失公平,應可參考BMI以行業區分授權契約種類模式。 二、即時性線上授權 BMI將授權契約區分為即時性授權契約與非即時性授權契約,而即時授權對於使用人而言,較為方便,我國則可考慮以即時線上授權為基礎,並將對象擴張至一般行業皆能運用。 三、費用計算方式 BMI即時線上授權收費方式區分為總收入計算法與網頁流量計算,在授權對象為網站時,給予多重選擇,例如使用者為一般網站時,網頁流量計算法是對其比較有利的。這種費用的計算方法,讓使用人可依據網站業務不同,選擇利益最大化之優點,增加了使用人使用平台誘因,故此方式值得借鏡。 綜上,BMI之授權方式與契約內容、經營方式有獨到之處,可成為我國著作權平台建立之參考範本,使著作得以順利流通,促進我國產業發展。惟各式授權契約擬定,除有賴大量契約範本蒐集方得完善,授權費用如何設定仍是未來類似平台建置營運必須透過交易經驗與資料統計分析始能克服之難題。 [1] 著作權法第10條:著作人於著作完成時享有著作權。 [2] Music Licensing History,National Religious Broadcasters Music License Committee,http://www.nrbmlc.com/music-licensing/music-licensing-history(last visited Sep. 8, 2015). [3] BMI,https://apps.bmi.com/licensing/nmwebsite.jsf(last visited Aug. 12, 2015). [4] Musuc Users,BMI,http://www.bmi.com/licensing(last visited Aug. 12, 2015). [5] Music License For Retail Establishments,BMI,http://www.bmi.com/forms/licensing/gl/rtl.pdf (last visited Sep. 12, 2015). [6] Music License For Fitness,Clubs,BMI, http://www.bmi.com/forms/licensing/gl/fit1.pdf,(last visited Sep. 8, 2015). [7] BMI,http://www.bmi.com/digital_licensing(last visited Sep. 8, 2015). [8] 例如來站人次、瀏覽人數。 [9] BMI,http://www.bmi.com/digital_licensing(last visited Aug. 11, 2015).
美國商務部產業安全局公布「確保聯網車輛資通訊技術及服務供應鏈安全」法規預告美國商務部產業安全局(Bureau of Industry and Security, BIS)於2024年9月23日公布「確保聯網車輛資通訊技術及服務供應鏈安全」(Securing the Information and Communications Technology and Services Supply Chain: Connected Vehicles)法規預告(Notice of Proposed Rulemaking, NPRM),旨在透過進口管制措施,保護美國聯網車供應鏈及使用安全,避免國家受到境外敵對勢力的威脅。 相較於BIS於2024年3月1日公告之法規制定預告(Advanced Notice of Proposed Rulemaking, ANPRM)意見徵詢中的討論,本次法規預告明確指出受進口管制的國家為中國及俄國,並將聯網車輛資通訊技術及服務之定義,限縮於車載資通訊系統、自動駕駛系統及衛星或蜂巢式通訊系統,排除資訊洩漏風險較小的車載操作系統、駕駛輔助系統及電池管理系統。法規預告中定義三種禁止交易型態:(1)禁止進口商將任何由中國或俄國擁有、控制或指揮的組織(下稱「中俄組織」)設計、開發、生產或供應(下稱「提供」)的車輛互聯系統(vehicle connectivity system, VCS)硬體進口至美國;(2)禁止聯網車製造商於美國進口或銷售含有中俄組織所提供的軟體之聯網整車;(3)禁止受中俄擁有、控制或指揮的製造商於美國銷售此類整車。 本次法規預告中亦提出兩種例外授權的制度:在特定條件下,例如年產量少於1000輛車、每年行駛公共道路少於30天等,廠商無須事前通知BIS,即可進行交易,然而須保存相關合規證明文件;不符前述一般授權資格者,可申請特殊授權,根據國安風險進行個案審查。其審查重點包含外國干預、資料洩漏、遠端控制潛力等風險。此外,為提升供應鏈透明度並檢查合規性,BIS預計要求VCS硬體進口商及聯網車製造商,每年針對涉及外國利益的交易,提交符合性聲明,並附軟硬體物料清單(Bill of Materials, BOM)證明。BIS針對此規範是否有效且必要進行意見徵詢,值得我國持續關注。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
澳洲政府發布國家區塊鏈路線圖,建立澳洲區塊鏈技術發展策略與目標澳洲產業創新科技部(Department of Industry, Innovation and Science)於2020年2月7日發布「國家區塊鏈路線圖:向區塊鏈賦能之未來前進(National Blockchain Roadmap: Progressing towards a blockchain-empowered future)」政策文件。此路線圖為澳洲政府為彰顯其對區塊鏈技術之重視,並認知到區塊鏈與其他科技結合後將可進一步增進工作機會、促進經濟成長、減少商業成本與提升整體生產力,因此提出之區塊鏈發展方向規劃。 本路線圖文件指出,為實現區塊鏈技術,澳洲政府將於三個關鍵領域建立相關策略:一、建立有效且合理的規範與標準;二、建立可驅動創新之技術與能力;以及三、促進國際投資與合作。 路線圖文件並針對2020至2025年之區塊鏈發展進行規劃,相關措施包含: 重新命名國家區塊鏈諮詢委員會為國家區塊鏈路線圖推動委員會,並使其具有監督路線圖推動之職權。 建立由產業、研究團隊以及政府合作之團隊,以分析未來可能之應用案例。 對目前使用案例進行經濟分析與研究可能措施選項。 建立與連結政府端區塊鏈使用者,以促進學習交流與進一步應用。 進行國際研究以辨識出其他國家中適合學習做為政府服務之實際案例。 與區塊鏈服務提供商密切合作進行商業創新研究,以提出可供實際案例運用之解決方案。 確保區塊鏈發展涵蓋於整體國家策略中以促進數位科技能力管理。 使產業與教育機構合作發展關於區塊鏈資格技能之共同框架與課程內容。 為澳洲區塊鏈新創公司提出能力發展協助計畫,使其可向全球擴張並與支持合格企業。 引導外資投資以促進澳洲區塊鏈生態系建立。 引導既有雙邊協議進行區塊鏈前端計畫之合作與發展。 增加政府部門合作以確保澳洲企業可與發展中之新興數位貿易基礎設施進行連結等。 澳洲政府期待透過推動本路線圖與結合先前提出之AI路線圖政策,達成於2030年前成為數位經濟國家之目標。