日本內閣府於2018年年初提出著作權法部分條文修正案,本次修正集中在合理使用之相關規定,並於5月17日經參議院審議通過。文部科學省在修正概要說明中,提及本次修法放寬合理使用範圍,包括下列幾種情事:
上述情形均無須得著作權人之同意。日本政府期待透過本次修法, 在教育推動、便利身障人士及美術館之數位典藏利用等相關數據資訊產業發展上,有效緩解可能產生侵害著作權之問題,故此次條文修正案及後續相關立法動態值得密切注意。
英國上訴法院智慧財產法專業法官Robin Jacob於2006年1月13日對是否應該核發軟體專利感到懷疑,並對美國專利法所奉行的原則-「任何在陽光下由人類所創造之物,皆可以被賦予專利」-表示不能茍同。該法官認為,從美國軟體專利實務在搜尋既存技術(Prior Art)時之遭遇來看,將專利核發予事實上僅具一般性效能之軟體,為軟體專利不可避免的現象,如此一來,在搜尋既存技術的過程中將產生極大問題。 軟體專利存在的必要性一直受到以「自由資訊基礎建設基金會」(the Foundation for a Free Information Infrastructure,簡稱FFII)為首之社會運動團體之懷疑,但截至目前為止仍極少有針對此一爭議的研究。歐洲委員會為此補助一個「以法律、技術與經濟層面切入探討軟體專利對創新之影響」的研究計畫,惟該計畫需待2007 年方能有所成果。無獨有偶,歐洲議會於2005年7月駁回「軟體專利指令」(全名:the directive on the patentability of computer-implemented inventions,俗稱software patent directive),理由是,該指令之通過將造成歐洲軟體專利與美國一樣過度氾濫的窘境。
日本經濟產業省公布自動駕駛後續之政策方針報告書 加拿大全力降低廢氣排放加拿大政府十三日宣布,將在未來七年內投入百億元資金,達成京都議定書的二氧化碳減量目標。根據這項計劃,加拿大將在二○○二年至二○一二年之間,把全國溫室廢氣減少二億七千萬公噸,但其中對本國實際減少的排放量,以及透過向窮國購買排放權扣抵的比例,並未提出具體說明。 計劃中雖要求大型排廢單位在此期間內必須把廢氣排放量減少三千六百萬公噸,但也遠低於加國當初在簽署京都議定書時所承諾的五千五百萬公噸。此外,計劃中也還有很大一部份,仍待聯邦與各省及產業界進一步談判,其中也未訂出產業和民眾各需負擔的減量責任額。 加國主要環保智庫大衛鈴木基金會氣候變化計劃主任卡特則批評,這項計劃的最大缺點在於把排廢減量主要責任都推到一般民眾身上。卡特指出,加國每年產生的溫室廢氣中,只有二成三來自一般民眾,但依據該會的分析,加國政府在這項計劃中,將把高達七成四的減量責任都壓到民眾身上。 加國政府同時也計劃撥款,資助清潔能源和減少排廢相關科技研發,並致力推動宣導,呼籲、教育民眾和社區一起投入減少排廢。新公布的減排溫室氣體環保計劃主要包括三個部分:氣候變化基金、伙伴合作基金和研究基金。氣候變化基金將幫助加拿大企業在國內外購買和出售廢氣排放量的指標數。伙伴合作基金將主要用於各省之間的相關合作項目,如建立從東部到西部的電網,使各省都能利用清潔的水電能源,盡量減少煤電使用量等。研究基金主要用于開發能減少溫室氣體排放量的新技術。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。