歐盟資料保護工作小組修正通過GDPR個人資料當事人同意指引

  因應歐盟「通用資料保護規則」(The General Data Protection Regulation,或譯為一般資料保護規則,下簡稱GDPR)執法之需,針對個人資料合法處理要件之一當事人「同意」,歐盟資料保護工作小組(Article 29 Data Protection Working Party, WP29)特於本(2018)年4月10日修正通過「當事人同意指引」(Guidelines on consent under Regulation 2016/679),其中就有效同意之要件、具體明確性、告知、獲得明確同意,獲有效同意之附加條件、同意與GDPR第6條所定其他法定要件之競合、兒少等其他GDPR特別關切領域,以及依據指令(95/46/EC)所取得之當事人同意等,均設有詳盡說明與事例。

  GDPR第4條第11項規定個人資料當事人之同意須自由為之、明確、被告知,及透過聲明或明確贊成之行為,就與其個人資料蒐集、處理或利用有關之事項清楚地表明其意願(unambiguous indication)並表示同意。殊值注意的是,如果控制者選擇依據當事人同意為任何部分處理之合法要件,須充分慎重為之,並在當事人撤回其同意時,即停止該部分之處理。如表明將依據當事人同意進行資料之處理,但實質上卻附麗於其他法律依據,對當事人而言即顯係重大不公平。

  換言之,控制者一旦選擇當事人同意為合法處理要件,即不能捨同意而就其他合法處理的基礎。例如,在當事人同意之有效性產生瑕疵時,亦不允許溯及援引「利用合法利益」(utilise the legitimate interest)為處理之正當化基礎。蓋控制者在蒐集個人資料之時,即應揭露其所依據之法定要件,故必須在蒐集前即決定其據以蒐集之合法要件為何。

相關連結
你可能會想參加
※ 歐盟資料保護工作小組修正通過GDPR個人資料當事人同意指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8043&no=64&tp=1 (最後瀏覽日:2025/08/18)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展   人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊   人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。   目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。   在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題   人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。   有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。   針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。   人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

2025年美國營業秘密管理重要實務

本文整理美國2025上半年營業秘密管理重要實務,以協助企業強化營業秘密保護。 一、實務常見的兩種不當使用營業秘密情境 由於數位化發展與遠距工作盛行,員工可以更容易地透過隨身碟、電子信箱等方式接觸並傳輸機密(數位文件)。 提醒公司應留意兩個實務常見的不當使用營業秘密的情境: 1. 員工離職後創業或跳槽至競爭公司。 2. 在公司因收購計畫進行盡職調查時,或公司與他方存有供應商、獨立承包商等合作關係期間,公司與他方共享機密資料,接收資訊方卻於協商破局/合作結束後持續留存並不當使用機密。 二、為防患未然,建議公司應「打造營業秘密保護文化」 「打造營業秘密保護文化」的7項重點如下: 1. 識別機密 公司應識別自身所擁有的營業秘密,區分營業秘密與一般資料。如果公司不清楚自己的營業秘密範圍,也會增加員工不知道需要謹慎處理哪些資料的風險。 2. 控管機密文件的重製、流通行為 監控機密文件的列印、下載等重製行為,禁止將公司機密資料傳輸至私人信箱或私人雲端帳戶。 3. 與員工簽訂保密契約,定期提醒保密義務,並客製化員工培訓課程 公司除與員工簽訂保密契約外,當員工開始新專案、轉調部門或升遷時,職務內容的變動,也會連帶影響公司需要向員工更新其對保密義務的理解。 公司應自員工入職起,進行定期的保密培訓與宣導,並針對特定職位客製化相關具體的保密情境,讓員工能夠確實了解公司的保密政策,知道自己應採取/不應採取某些行動,以及行動背後的原因。例如:工程師須了解技術文件的保護方式;銷售團隊需要與客戶資料、定價策略相關的保密培訓課程。 4. 離職人員管理 離職面談應明確提醒員工具持續性的保密義務,且留下相關紀錄,內容應包含對員工任職期間所接觸任何營業秘密的討論資訊,並讓員工簽署書面聲明,確認自己具有保密義務。 5. 網路控管 遠距登入公司系統須透過VPN。 6. 外部活動管理 公司應留意與外部單位(潛在合作夥伴、供應商或客戶)共用敏感資料時,契約須明確約定可共用的資料範圍、可共用資料的人員以及可共用資料的情境。契約應包含保密契約、標示機密資料、返還機密的流程以及定期稽核以確保遵守保密義務。 7. 稽核與改善 定期稽核與持續改善有助於強化營業秘密保護機制,例如:法務、資訊、研發及銷售等部門跨部門協力合作,並持續培訓以打造營業秘密保護文化。 三、面臨營業秘密訴訟,行動策略為關鍵 營業秘密案件通常需要立即採取行動,以防止造成無法彌補的損害。由於在訴訟階段,法院不會僅憑「懷疑」或「模糊描述」就核發禁制令。建議公司平時應落實以下管理措施,以便能夠在發現風險行為後2~3天內,迅速蒐集相應佐證: 1. 證據保全機制應包含:妥善保存電子郵件、系統存取紀錄、裝置使用紀錄等證據。 2. 區分營業秘密的範圍。 3. 持續執行公司所設定的控管措施,如:公司保密政策;保密契約、僱傭契約等契約的保密義務;員工培訓。 4. 留存能夠佐證營業秘密的經濟價值的相關資訊,如:研發投入成本、競爭優勢等。 綜上,公司如欲減少實務上營業秘密糾紛風險,應及早確認是否落實、需要精進公司的營業秘密管理機制,建議國內公司可參考資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」,協助公司檢視並循序調整營業秘密管理作法。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

Ofcom建議ISP之寬頻廣告應以平均速度為準

  鑑於ISP對於寬頻服務的廣告速度常與實際提供速度有落差,英國廣告標準管理局(Advertising Standards Authority,ASA)要求廣告事務委員會(Committee for Advertising Practice,CAP)與廣播廣告事務委員會(Broadcast Committee for Advertising Practice,BCAP)針對英國各地區的ISP寬頻廣告進行審查,CAP與BCAP則委託Ofcom進行各ISP實際寬頻服務速度之調查。   Ofcom於2010年11月~12月期間,針對ADSL、Cable及光纖等寬頻服務進行各時段的大規模測試。綜合以往的調查,Ofcom研究結果發現,英國寬頻服務平均速度約從 5.2 Mbps(2010年5月)至6.2 Mbps的(2010年11~12月),但不到廣告所宣稱速度之一半(平均寬頻廣告速度為 13.8 Mbps,故僅約45%。)   在各種寬頻技術中,ADSL的廣告與實際落差最大,廣告宣稱8Mbps之速度,實際平均僅有2~5Mbps;而Cable的廣告與實際落差最小,實際速度均能達到廣告速度的90%左右;光纖寬頻則約在80%~90%之間。      Ofcom並建議將以下原則增訂至英國寬頻速度自律規則(Voluntary Code of Practice on Broadband Speeds)中 • 如果寬頻速度是廣告內容,必須包括一個「典型的速度範圍」(Typical Speed Range,TSR),計算依據為將某一速度之使用者依照實際接取速度分為四等級,去掉最高與最低,取中間50%使用者之平均速度為準; • TSR必須至少與宣稱之速度相當; • 宣稱的速度必須代表相當大比例使用者能夠接受的實際速度; • 任何TSR或宣稱之速度在用於廣告時,必須是基於足夠的分析統計數據,而該數據與方法應經過審議。   Ofcom認為ISP的寬頻廣告應反映消費者能接受之實際速度,因此改變廣告規範是必要的,以促使各ISP進行以速度為基礎之競爭,並確保消費者有充分資訊可比較、選擇最有效率之寬頻服務。

TOP