緣起於2016年的加密法案(ENCRYPT Act),由於今年發生了臉書劍橋分析事件,以及歐盟GDPR的影響,本此法案再提的聲勢如浪潮襲來,不僅眾多議員附和,連企業(如:電子前線基金會Electronic Frontier Foundation,EFF)都予以支持。
加密法案的主要內容係以兩方面進行加密應用之保護,
本法案的主要提案者美國眾議員Ted Lieu指出,與加密或資料存取相關的問題,皆應在聯邦政府的層級進行討論,而就其本身電腦科學的專業,指出在各州間保有不同的加密應用執法標準,對資安、消費者、創新,以及執法本身都是不利的,引此本法案的推動旨在強化州際商業和經濟安全,以及網路安全問題,希望能對加密應用議題作全國性的討論,而不會損害使用者在過程中的安全性。
歐洲人權法院(European Court of Human Rights,簡稱ECtHR)於2025年4月8日就Green v. The UK案作成判決,針對國會議員發言揭露個資是否構成隱私權侵害之爭議,強調國家就衡平立法權與司法權的界線、言論自由與隱私保護等利益享有裁量權,駁回了申訴人之請求。 一、事實背景 本案起源於英國每日電訊報(Telegraph)試圖就英國零售集團Arcadia的前員工針對其董事長Philip Green的職場性騷擾與霸凌指控進行報導。先前,Arcadia及Green已與涉及相關糾紛的員工達成了和解協議,依據協議所附保密協定,員工除正當揭露(如向警察揭露犯罪)外不得洩露相關資訊。Green於Telegraph於報導前徵求當事人評論時發現資訊遭洩露,隨即向法院申請禁制令與暫時禁制令,英國上訴法院嗣後批准了暫時禁制令,認定Telegraph獲得的資訊很可能來自違反保密協定的揭露,也不認為欲報導的內容當然具備凌駕當事人可能蒙受之損害的公共利益。Telegraph最終尊重了暫時禁制令。惟隔日,一位英國上議院議員援引言論免責權,於議會發表了雖不涉及細節,但具體提及Green身分和關於其性騷擾、霸凌的指控,並提及Telegraph遭禁制報導一事。Green因此向議會申訴,認為議員違反了司法保密規則(sub judice rule)(編按:上議院曾做成決議,認除非具全國重要性,議員不得於動議、辯論或質問中論及繫屬於法院中的個案)及濫用免責權,但上議院標準專員(House of Lords Commissioner for Standards)認為司法保密規則不屬於《上議院行為準則》。Green嗣後在法院中試圖向Telegraph請求賠償,認為Telegraph應要為議員的發言負責,違反了禁制令,並要求提供線人身分。Telegraph抗辯,在議員享有免責權的前提下,法院毋庸受理本案處理其責任問題。Green向ECtHR提出申訴,主張國家對議員使用免責權揭露受禁制令約束的資訊的權力缺乏事前和事後控制,侵犯了其受歐洲人權公約(ECHR)第8條保障的私生活權。 二、法院判斷 法院認為由於受暫時禁制令保護的資訊被揭露,Green的私生活權利確實受到干預。然而,法院不認為國家違反了公約課予國家保護私生活權之積極義務(positive obligation)。核心理由在於:國家對如何履行積極義務有廣泛的裁量權,且於各國就保護方式較無共識,或涉及基本權利間之衡平時,法院尤應尊重裁量空間。 針對本案,法院認為:(1)議會中的言論自由享有較高程度的保護,對其干涉需要非常重大的理由(very weighty reasons);(2)涉及司法權與立法權的具體界線,以及言論自由與隱私保護的利益衡量;(3)必須考量議會自治原則在多國之間有廣泛共識;(4)英國並非完全沒有針對國會議員發言的事前、事後控制措施。儘管非屬《上議院行為準則》,但上議院所做成的司法保密規則決議,仍屬一定程度的事前控制。事後來看,國會議員若確實構成濫用免責權,法院也可以判處蔑視法庭罪。 法院總結認為,基於原則上各國議會較國際法院,更適合評估限制議會行為之必要性與手段,法院要取代這個判斷須要非常重大的理由,但本案中Green並無法成功論述這個理由存在,因此駁回Green的主張。
澳洲修正線上安全法,限制16歲以下之人使用社群媒體平臺.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 澳洲國會於2024年11月29日通過線上安全法(Online Safety Act)修正案,防止16歲以下人擁有社群媒體平臺帳號。澳洲早在2021年就制定線上安全法,將未成年人之線上安全列為規範重點,惟立法當時並未設有社群媒體平臺使用者之最低年齡限制。近年來因網路性剝削、假訊息與仇恨言論問題越發嚴重,促使澳洲國會兩院迅速通過本次修法。 新修線上安全法於第63C條增定「具年齡限制之社群媒體平臺」(Age-Restricted Social Media Platform, ARSMP)之定義,係指符合下列條件之電子服務:(1)服務之唯一或主要目的在促進2人以上終端使用者之線上社交互動,但不包商務互動(business interaction)、(2)允許終端使用者能與其他終端使用者連結或互動、(3)允許終端使用者能發布訊息及(4)其他法律規定之條件;或其他經本法授權通訊部長透過法規所明定之電子服務。目前符合此定義之ARSMP,如Snapchat、TikTok、Facebook、Instagram、X等。 ARSMP必須採取合理步驟(reasonable steps)避免16歲以下之人擁有前述社群媒體平臺帳號,違規者將被處以3萬個民事罰款單位(約美金990萬元)。新法授權電子安全專員(eSaftyCommissioner)後續訂定ARSMP合理步驟指引,或由通訊部長會商電子安全專員以法規方式訂定之。此外,新法也針對ARSMP為確認使用者年齡蒐集個人資料一事制定相關規範,包括符合目的特定原則、經當事人知情同意、目的消失後銷毀個人資料等。 為給予社群媒體平臺服務提供者調整系統之緩衝期間,新法預計於國會通過後1年內生效。
英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定Uber違反《Data Protection Act 1998》資料保護法英國資訊委員辦公室(Information Commissioner’s Office,ICO)認定知名共享公司Uber未能在網路攻擊期間保護客戶的個人資料,故處以罰款385,000英鎊。 ICO調查發現Uber的諸多過失,包含系統存有一系列原可避免的數據安全漏洞,使得攻擊者可透過Uber美國母公司旗下所營運的雲端儲存系統,下載大約270萬筆英國客戶個人資料,例如全名、電子郵件及電話號碼等。該事件亦影響了Uber在英國8萬多名司機的相關營運紀錄,如旅程詳情及支付金額。然而,受影響的客戶和司機竟達一年多未被告知此個資外洩事故。相反的,Uber反而向攻擊者妥協並支付了10萬美元,以銷毀被盜取的數據。 ICO認為,這不僅為Uber資料安全之問題,且當時未採取任何措施通知可能受影響的人,或對其提供任何協助,已完全忽視受害客戶和司機之權益。而對攻擊者支付贖金後即保持沉默,亦非對於網路攻擊之適當反應,Uber未完善的數據保護措施,以及隨後的決策與行為,反將可能會加劇受害者權益的受損。 因此,ICO認為該事件已嚴重違反了英國1988年資料保護法(Data Protection Act 1998, DPA)第7條的原則,有可能使受影響的客戶和司機面臨更高的詐欺風險,故從嚴判處Uber高達385,000英鎊罰款。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。