歐洲執委會公布安全,清潔,聯網式交通行動議程

  歐盟執委員會於2018年5月17日公布第三套安全,清潔和聯網式行動議程,該套行動也是最後一套實現歐洲運輸系統現代化的措施。

  在2017年9月的國情咨文中,歐盟主席容克提出歐盟產業成為創新,數位化和低碳化均能領先於全球地位的目標。基於此原因,在交通領域執委會2017年5月和11月的提出兩套歐洲行動措施,其目標係讓所有歐洲人都能從享受更安全的交通,更少污染的車輛和更先進的技術解決方案,並同時加強歐盟產業業的競爭力。為此,本次議程聚焦包括未來車輛和基礎設施安全措施綜合政策;重型車輛的二氧化碳標準; 歐洲發展和製造電池的戰略行動計畫以及關於車聯網和自駕車的前瞻性戰略。

  而歐洲能源聯盟表示:交通正到跨越一個新的技術前沿,透過能源聯盟的最終提案,將可幫助我們相關產業保持領先地位,並透過大規模研發關鍵技術解決方案,包括潔淨能源之電池技術和建置相關充電基礎設施,以解決碳排放,行車擁堵和降低事故發生。

  歐盟氣候行動與能源專員亦表示:所有部門都必須為實現巴黎協議之氣候承諾做出貢獻,這就是為什麼歐盟在有史以來第一次訂定提提高燃油效率標轉和減少碳排放的標準,也為歐洲工業鞏固當前在創新技術領域的領導地位。

  歐盟交通運輸專員亦表示:過去一年,執委會在通領域提出許多重大舉措,以提升未來交通安全、乾淨及聯網性。所有措施皆以乾淨且智慧的交通工具目標前進,並尋求各成員國和歐洲議會能支持該雄心壯志。

  歐盟內部市場,產業,創業和中小企業專員表示:90%的道路交通事故係出於人為錯誤,目前提出新的強制性安全功能將減少事故的數量,並有利車聯網及自駕車技術發展。

  本次議程內容簡介如下

  1. 交通安全
    從2001年至今道路死亡人數減少已了一半以上,然2017年歐盟境內仍有25,300人交通事故身亡,及13.5 萬人受重傷。因此,歐盟執委會建議新型車輛應配備先進的安全功能,例如用於汽車的先進緊急煞車和車距保持輔助系統或卡車對於周遭行人和用路人之檢測系統。此外,委員會將幫助成員國能在危險路段進行系統性改善建設投資。預計將可挽救多達10,500人的生命,並在2020-2030年期間避免接近6萬人的嚴重受傷,從而為歐盟實現2050年接近零死亡和重傷的長期目標做出貢獻。
  2. 交通能源清潔性
    歐盟執委會將提出有史以來第一個重型車輛的二氧化碳排放標準來完成低排放交通系統的計畫。此外,2025年,新卡車的二氧化碳平均排放量必須比2019年低15%。2030年,新卡車與2019年相比,必須達到至少30%的減排目標。該目標符合可協助歐盟於巴黎協議所作的承諾,並將使運輸公司(主要是中小企業)透過降低油耗(5年25,000歐元)節省大量成本。為了進一步減少二氧化碳排放,委員將會促進更多的先進低汙染的車輛(例如:改善汽車動力學、輪胎等零件)。此外,委員會將提出一個全面的行動計畫,將有助於在歐洲建立一個具有競爭力和永續性發展的電池生態系統。
  3. 車聯網及自駕車
    目前越來越多地車輛已配備駕駛員輔助系統,並朝完全自動駕駛車輛目標邁進。因此,該戰略將著眼於道路使用者之間的新協同操作,此將為整個交通系統帶來巨大的利益。運輸將變得更安全,更清潔,更便宜,並使老年人和行動不便的人更方便。此外,執委會建議建立一個全數位化的貨運資訊交換環境,以促進物流運作的數位資訊流。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐洲執委會公布安全,清潔,聯網式交通行動議程, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8053&no=67&tp=1 (最後瀏覽日:2026/01/24)
引註此篇文章
你可能還會想看
日本發布電力、天然氣及石油部門之去碳轉型金融路徑圖

  日本經濟產業省於2022年2月4日發布電力、天然氣及石油部門的「去碳轉型金融路徑圖」(トランジション・ファイナンスに関するロードマップ),作為各部門轉型金融之指引,確保資金持續投入,協助二氧化碳主要排放部門朝去碳化轉型,以實現2050年碳中和目標。   電力、天然氣及石油部門之「去碳轉型金融路徑圖」,係以科學根據為基礎,依據日本國內電力、天然氣、石油部門之現況及相關政策規劃,導入現階段具可行性之技術,確實推動減少二氧化碳排放;同時並針對未來技術的發展與革新目標訂定時間表,確保技術與各部門未來之發展能有助日本於2050年達成碳中和目標。一方面於企業欲透過轉型金融取得資金時,指引企業針對其現行氣候變遷對策進行檢討;另一方面,亦可協助金融機構審視企業於轉型融資時所提出之轉型策略與措施,以判斷是否符合轉型金融之資格。各部門主要重點如下: 電力:2020年開始導入轉型燃料(生質能、氫、氨與天然氣之混和燃燒),並逐步淘汰傳統火力發電;2030年確立去碳燃料(純生質能、氫、氨火力發電、再生能源等)相關技術,並推動商用化。 石油:2020年起開發石油製程節能技術,並推動轉型以天然氣為主要燃料;同時發展氫氣製造技術、二氧化碳捕捉技術,於2030年達成商用化。 天然氣:2020年起針對天然氣、液化石油氣進行節能製程、燃料利用效率、合成燃料相關技術開發,並擴大建置都市天然氣管線、確保液化石油氣配送途徑等。

OECD就全球企業最低稅負制發布避風港規則

經濟合作暨發展組織(下稱OECD)於2022年12月20日發布全球企業最低稅負制(即第二支柱,下稱最低稅負制)的「避風港與罰款免除規則」,再於2023年2月2日發布進階行政指引。系爭規則與指引旨在協助跨國企業降低法律遵循成本。 經蓋最低稅負制為防免跨國企業以稅捐規劃(如移轉訂價等方式)持續侵蝕稅基,透過實施補充稅(Top-up Tax)制度,並配合所得涵蓋與徵稅不足支出等原則,即向上或向下分配等方式,確保全球收入逾7.5億歐元的跨國企業及其所有經濟實體的個別有效稅率均不低於15%。 經上述補充稅制度看似簡單,惟其實施同時涉及各國相互合作與彼此補充稅間可能的零和遊戲,徵之各國境內稅捐制度調整、現有國際稅捐規則的淘換與新國際稅捐規則的建立等交互作用下,導致OECD與最低稅負制有關文件繁多,內容細項更不計可數,增添不確定性;另外,包含我國在內的許多國家均表示將於2024年起陸續實施全球企業最低稅負制,再增添急迫性。此不確定性與急迫性的雙重夾擊,致使受規範跨國企業法律遵循成本持續增加。 經準此,為避免最低稅負制不當限制跨國企業發展,甚至有害全球經濟,OECD提出避風港條款,使位於高稅負或低風險稅捐管轄區的跨國企業或其經濟實體得減免其補充稅或簡化其計算基礎等,提高補充稅制度確定性以協助降低跨國企業法律遵循成本。

日本推升農業資料契約指針成為補助計畫要點

  日本農林水產省(以下簡稱農水省)從2021年起於補助計畫要點中規定,農業關係人利用農水省補助金導入智慧農機、無人機、農業機器人、IoT機器等所產生資料,且為系統服務業者取得、保管的情況下,須符合2020年農業領域AI資料契約指引要求之相關程序(下稱GL合規)。系統服務業者可依據農水省網站所提供的GL合規CHECKLIST,自行向律師、專利師等諮詢,評估其與農業資料提供者間契約是否GL合規。農水省亦於2020年年底召開兩場相關說明會,條列出須GL合規之補助計畫清單,且相關計畫規定預計於2021年生效(2021年1月6日至2月10日公開招募之智慧農業實證計畫即已有相關規定)。   前述規定係源自於2020年7月17日日本閣議通過最新版「規制改革實施計畫」,其中與「農業資料利用」相關實施項目為:利用農水省補助金導入智慧農業機械時所締結之契約,應符合2020年農業領域AI資料契約指引之核心精神,保障農民可使用其提供給系統服務業者所保管之數據資料。日本政府為促進農業關係人提供資料,於2020年制定農業領域AI資料契約指引,做為農業資料提供者與智農機具系統服務業者訂立契約時之參考。為更進一步促使系統服務業者獲得農業資料提供者的信賴,透過規制改革實施計畫,將該農業資料契約指針推升成為補助計畫要點,可作為我國農業領域推動資料提供、保護、或流通運用機制之借鏡。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP