歐洲執委會公布安全,清潔,聯網式交通行動議程

  歐盟執委員會於2018年5月17日公布第三套安全,清潔和聯網式行動議程,該套行動也是最後一套實現歐洲運輸系統現代化的措施。

  在2017年9月的國情咨文中,歐盟主席容克提出歐盟產業成為創新,數位化和低碳化均能領先於全球地位的目標。基於此原因,在交通領域執委會2017年5月和11月的提出兩套歐洲行動措施,其目標係讓所有歐洲人都能從享受更安全的交通,更少污染的車輛和更先進的技術解決方案,並同時加強歐盟產業業的競爭力。為此,本次議程聚焦包括未來車輛和基礎設施安全措施綜合政策;重型車輛的二氧化碳標準; 歐洲發展和製造電池的戰略行動計畫以及關於車聯網和自駕車的前瞻性戰略。

  而歐洲能源聯盟表示:交通正到跨越一個新的技術前沿,透過能源聯盟的最終提案,將可幫助我們相關產業保持領先地位,並透過大規模研發關鍵技術解決方案,包括潔淨能源之電池技術和建置相關充電基礎設施,以解決碳排放,行車擁堵和降低事故發生。

  歐盟氣候行動與能源專員亦表示:所有部門都必須為實現巴黎協議之氣候承諾做出貢獻,這就是為什麼歐盟在有史以來第一次訂定提提高燃油效率標轉和減少碳排放的標準,也為歐洲工業鞏固當前在創新技術領域的領導地位。

  歐盟交通運輸專員亦表示:過去一年,執委會在通領域提出許多重大舉措,以提升未來交通安全、乾淨及聯網性。所有措施皆以乾淨且智慧的交通工具目標前進,並尋求各成員國和歐洲議會能支持該雄心壯志。

  歐盟內部市場,產業,創業和中小企業專員表示:90%的道路交通事故係出於人為錯誤,目前提出新的強制性安全功能將減少事故的數量,並有利車聯網及自駕車技術發展。

  本次議程內容簡介如下

  1. 交通安全
    從2001年至今道路死亡人數減少已了一半以上,然2017年歐盟境內仍有25,300人交通事故身亡,及13.5 萬人受重傷。因此,歐盟執委會建議新型車輛應配備先進的安全功能,例如用於汽車的先進緊急煞車和車距保持輔助系統或卡車對於周遭行人和用路人之檢測系統。此外,委員會將幫助成員國能在危險路段進行系統性改善建設投資。預計將可挽救多達10,500人的生命,並在2020-2030年期間避免接近6萬人的嚴重受傷,從而為歐盟實現2050年接近零死亡和重傷的長期目標做出貢獻。
  2. 交通能源清潔性
    歐盟執委會將提出有史以來第一個重型車輛的二氧化碳排放標準來完成低排放交通系統的計畫。此外,2025年,新卡車的二氧化碳平均排放量必須比2019年低15%。2030年,新卡車與2019年相比,必須達到至少30%的減排目標。該目標符合可協助歐盟於巴黎協議所作的承諾,並將使運輸公司(主要是中小企業)透過降低油耗(5年25,000歐元)節省大量成本。為了進一步減少二氧化碳排放,委員將會促進更多的先進低汙染的車輛(例如:改善汽車動力學、輪胎等零件)。此外,委員會將提出一個全面的行動計畫,將有助於在歐洲建立一個具有競爭力和永續性發展的電池生態系統。
  3. 車聯網及自駕車
    目前越來越多地車輛已配備駕駛員輔助系統,並朝完全自動駕駛車輛目標邁進。因此,該戰略將著眼於道路使用者之間的新協同操作,此將為整個交通系統帶來巨大的利益。運輸將變得更安全,更清潔,更便宜,並使老年人和行動不便的人更方便。此外,執委會建議建立一個全數位化的貨運資訊交換環境,以促進物流運作的數位資訊流。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐洲執委會公布安全,清潔,聯網式交通行動議程, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8053&no=67&tp=1 (最後瀏覽日:2025/11/05)
引註此篇文章
你可能還會想看
「自動駕駛車(self-driving car)」可否合法上路?

  「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。   目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。   而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

智慧城市-美國最新政策發展

  美國政府在2015年9月14日發布,將投入超過1.6億美元(約台幣50億元)於新的「智慧城市計畫」(Smart Cities Initiative)。透過中央政府的研究,以及全美國超過二十個城市的合作,來共同著手城市主要面臨的問題,包含:減緩交通阻塞、對抗犯罪問題、促進經濟成長、對於氣候變遷影響的管理、改善城市服務的遞送問題等。此戰略主要有四個策略方案:(一)創造「智慧聯網」應用的試驗平台,並發展新的多部門合作模式;(二)致力於城市科技相關的活動,並打造城市之間的合作;(三)善用現有的中央政府資源;(四)追求國際間合作。   而在十月份,美國白宮公佈由國家經濟委員會(National Economic Council)與國家科學與技術政策辦公室(Office of Science and Technology Policy)共同完成的「美國創新戰略」(A Strategy for American Innovation)中,明確地指出美國國家的突破重點領域為:解決國家及全球性的挑戰(Tackling Grand Challenges)、精密醫療、健康照護、先進的運輸工具、智慧城市、乾淨能源與能源效率、教育科技等面向。此戰略報告係延續美國白宮於2011年,由相同組織單位所完成的「美國創新戰略-確保經濟發展與繁榮」(A Strategy for American Innovation – Securing Our Economic Growth and Prosperity),其中列舉出國家的目標政策為:能源改革、生物科技、太空探索、醫療健康與教育科技。相較下,十月份甫公佈的美國「創新戰略」則更明確的將「智慧城市」之發展設為重點政策。   美國政府將投入協助芝加哥(Chicago)「科技計畫」(Tech Plan)中的子計畫-「城市感測器專案」(Array of Things, AoT),發展當地下一代智慧聯網的基礎設施,包括運用內建Wi-Fi的感測器裝置路燈,使其能夠有照明的基本功能外,還能蒐集諸如人潮流量、天氣、濕度、空氣品質、亮度、聲音大小等數據。   在此戰略推動之下,美國主要之智慧城市發展的實例,如匹茲堡(Pittsburgh)的前導計畫(pilot project),係藉由交通網絡之間的交通號誌整合,得以優化地區性的交通吞吐量,讓平均降低將近百分之二十五的交通時間。另外,在肯塔基州(Kentucky)的最大城市-路易斯維爾(Louisville),利用具有感測功能之哮喘吸入器所蒐集的資料,統整出哮喘發生的「熱點」,以及空氣品質等級等其他環境因素,作為該州政府政策制定參考依據。

美國專利商標局公布2019年專利適格性審查指南

  美國專利商標局在2019年1月4日公布專利適格性審查指南(2019 Revised Patent Subject Matter Eligibility Guidance, 下稱新審查指南)。新審查指南對於如何使用美國最高法院Alice/Mayo測試法第一步驟(步驟2A),判斷專利請求項是否指向司法排除事項(judicial exception),做了兩個主要修改:   (1)明確屬於「抽象概念」的排除事項包括:數學概念、組織人類活動的特定方法與心智活動。新審查指南並舉例說明數學概念包括數學關係、公式或方程式;組織人類活動的方法包括基本經濟原則或實踐、商業或法律互動關係,或管理個人行為或人與人之間的關係或互動;心智活動包括人類在心中執行的思想,例如觀察、評估、判斷或意見。根據新審查指南,審查委員不再需要將專利請求項與過去的判例比較來判斷專利標的是否屬於抽象概念。   (2)將判斷請求項是否指向司法排除事項的第一步驟(步驟2A)改為兩階段測試。首先,審查委員評估請求項是否屬於司法排除事項(自然法則、自然現象、抽象概念),若是,要進一步評估請求項是否有其他要素(element)可將該司法排除事項結合到「實際應用」中。若可,則不屬於司法排除事項。若無法將其結合到「實際應用」中,才須進行Alice/Mayo測試法第二步驟(步驟2B)的審查。新審查指南也對其他要素結合司法排除事項的「實際應用」提供例示,包括:反映電腦功能或其他技術的改進、應用該司法排除事項使特定疾病或醫療狀況的治療或預防產生效果、將該司法排除事項用在特定機器或製品中且在請求項中限定使用的機器或製品、使特定物品轉換到另一種狀態或成為另一種物品。   此修改將增加審查委員以抽象概念核駁專利請求項的舉證負擔,審查委員必須闡明為何發明不構成步驟2A中的「實際應用」,還要在步驟2B證明為何該元素屬於已熟知、常規或習知的行為。因此,新審查指南將使審查委員要以抽象概念核駁發明,特別是軟體相關發明的難度變高。   新審查指南已於2019年1月7日生效並徵求公眾意見,後續還可能會發生變化。此外,由於該指南不具有法律約束力,因此法院將如何根據新審查指南評估核准專利之有效性仍有待觀察。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

TOP