德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。

  德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。

  例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何?

本份指南則提出六項建議:

  1. 促進企業內部及外部訂定相關準則
  2. 提升產品及服務透明度
  3. 使用相關技術應為全體利益著想
  4. 決策系統的可靠性仍取決資料的準確性。
  5. 重視並解決解決機器偏差問題
  6. 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。

本文為「經濟部產業技術司科技專案成果」

※ 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8070&no=55&tp=5 (最後瀏覽日:2026/01/12)
引註此篇文章
你可能還會想看
美國商務部修改《出口管制規則》限制華為取得由美國技術及軟體設計製造的半導體產品

  美國商務部工業及安全局(Bureau of Industry and Security, BIS)於2020年5月15日公告,為防止中國大陸華為取得關鍵技術,修正美國《出口管制規則》(Export Administration Regulations, EAR)第736.2(b)(3)條第(vi)款「外國直接產品規則」(Foreign-Produced Direct Product Rule),限制華為透過國外廠商,取得包含美國技術及軟體設計製造在內的半導體產品,以保護美國國家安全。並於「實體清單」(Entity List)增加註腳一(footnote 1 of Supplement No. 4 to part 744)之規定,使部分出口管制分類編號(Export Control Classification Number, ECCN)第3(電子產品設計與生產)、4(電腦相關產品)、5(電信及資訊安全)類之技術所製造的產品,不能出口給華為與分支企業。   自2019年起,BIS將華為及其114個海外關係企業列入實體清單以來,任何要出口美國產品給華為的企業,必須事先取得美國出口許可證;然而,華為及其海外分支機構透過美國委託海外代工廠商生產產品事業,繞道使用美國軟體和技術所設計的半導體產品,已破壞美國國家安全機制與設置出口管制實體清單所欲達成之外交政策目的。本次為修補規則漏洞調整「外國直接產品規則」,不僅限制華為及其實體清單所列關係企業(例如海思半導體),使用美國商業管制清單(Commerce control list, CCL)內的軟體與技術,設計生產產品。美國以外廠商(例如我國台積電)為華為及實體清單所列關係企業生產代工,使用CCL清單內的軟體與技術,設計生產的半導體製造設備與產品,亦將同受《出口管制規則》之拘束。這代表此類外國生產產品,從美國以外地區,透過出口、再出口或轉讓給華為及實體清單上的關係企業時,皆需取得美國政府出口許可證,影響範圍擴及全球產業供應鏈。

美國零售商Kroger聲稱零售商Lidl註冊之新商標有混淆Kroger的知名商標之虞

  Kroger成立於1883年,在美國擁有近3000家分店,為美國最大食品雜貨零售店,其註冊商標“Private Selection”相當知名,被廣泛使用在超市、便利商店及其他各種零售商店約20多年。然而在全球擁有超過10000家分店的歐洲零售店巨頭Lidl,亦於2016年9月19日於美國註冊與“Private Selection”近似的商標“Preferred Selection”。   對此,Kroger於Lidl在美國開立新門市不久之後,即於今(2017)年6月30日對Lidl起訴,主張Lidl的“Preferred Selection”與Kroger的“Private Selection”品牌商標太相似,Lidl於德國是以低價折扣作定位之連鎖超市,且產品曾被認定為劣質。Lidl的行為意圖混淆“Preferred Selection”與“Private Selection”,將稀釋Kroger的品牌知名度,不僅侵害商標亦將損及商譽,甚至從中牟取不當利益,導致不公平競爭。故Kroger據以向美國維吉尼亞州地方法院請求禁止Lidl販售使用“Preferred Selection”商標的產品。   Lidl反駁認為其商標註冊已有一段時間,Kroger卻故意選其展店亮相後才大肆攻擊Lidl的新品牌,嚴重干擾Lidl的宣傳效益,更何況兩者商標名稱不同,標誌圖形的設計也不同。今年7月25日,美國維吉尼亞州地方法院法官表示,儘管品牌標誌看起來相似,但兩者並無相同或相似的含意,拒絕授予Kroger聲請之禁令。惟兩造於今年9月達成協議,請求法院駁回訴訟,而Lidl最終於今年9月12日放棄“Preferred Selection”商標權。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

新加坡個人資料保護委員會發布資料保護專員之職能與培訓準則

  新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2019年7月17日發布資料保護專員之職能與培訓準則。基於新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)明文規範非公務機關必須設立至少一名資料保護長(Data Protection Officer, DPO),負責個資保護政策之制定落實、風險評鑑及個資事故處理等工作。為了使資料保護專業人員增強能力並於企業組織有效履行其職責,新加坡個人資料保護委員會就此特別發布此準則,將資料保護專員分為三種工作職能,九項專業能力,進而規劃相關培訓課程。   此準則使企業組織能就工作職能聘僱合適之資料保護專員,亦使相關專業人員能掌握清晰之職業生涯,確定自我能力與培訓課程之落差,進而調整有效實施組織之個人資料保護管理政策與流程。其分為資料保護專員、資料保護長、區域資料保護長,依據工作職能與職責區分如下: 一、 資料保護專員 需監視與評估組織之個人資料保護管理政策與程序,並確保其遵循新加坡個人資料保護法。 識別個人資料之風險,並提出風險管控之措施。 提供組織個人資料保護政策之實施與實踐證據。 定期檢視審核,分析現況並矯正改善。 識別並規劃利害關係人之需求與利益。 二、 資料保護長 制定並審查個人資料管理計劃。 根據組織職能,視需求與流程,執行個人資料保護與風險評鑑,並解決相關業務風險。 制定培訓計劃,舉辦個人資料保護政策與流程之教育訓練。 確保組織內部個人資料保護之意識。 根據業務營運與個資法遵要求之落差評估,並建立合規性流程。 透過客戶對隱私與個人資料保護之要求,做為日後促進資料創新之實施。 三、 區域資料保護長 監督資料傳輸活動,並提供個人資料保護法之領導指南。 建立區域創新之資料保護策略。 減少區域內之個資事故。 於資料創新之運用提供戰略性,為組織創造業務價值。 評估新興趨勢與科技,如隱私增強技術、雲端運算、區塊鏈、網絡安全之風險與可行性。   針對上述工作職能與職責,結合所需之專業能力,包括個人資料管理、風險評鑑管理、個資事故緊急應變、利害關係人管理、個人資料稽核認證、個人資料治理、個人資料保護之倫理、資料共享與創新思維,規劃基礎個人資料保護相關課程與進階資料創新課程,使其個人資料保護制度更專業具有規模。目前我國對於資料保護專員並無相關立法規範,若未來修法新加坡個人資料保護委員會之做法亦值參酌。

TOP