伴隨IoT和AI等技術發展,業者間被期待能合作透過資料創造新的附加價值及解決社會問題,惟在缺乏相關契約實務經驗的狀況下,如何締結契約成為應首要處理的課題。
針對上述狀況,日本經濟產業省於2017年5月公布「資料利用權限契約指引1.0版」(データの利用権限に関する契約ガイドラインVer1.0),隨後又設置AI、資料契約指引檢討會(AI・データ契約ガイドライン検討会),展開後續修正檢討,在追加整理資料利用契約類型、AI開發利用之權利關係及責任關係等內容後,公布「AI、資料利用契約指引草案」(AI・データの利用に関する契約ガイドライン(案)),於2018年4月27日至5月26日間公開募集意見,並於2018年6月15日正式公布「AI、資料利用契約指引」(「AI・データの利用に関する契約ガイドライン)。
「AI、資料利用契約指引」分為資料篇與AI篇。資料篇整理資料契約類型,將資料契約分為「資料提供型」、「資料創造型」和「資料共用型(平台型)」,說明個別契約架構及主要的法律問題,並提示契約條項及訂定各條項時應考慮的要點,希望能達成促進資料有效運用之目的。
AI篇說明AI技術特性和基本概念,將AI開發契約依照開發流程分為(1)評估(assessment)階段;(2)概念驗證(Proof of Concept, PoC)階段;(3)開發階段;(4)進階學習階段,並針對各階段契約方式和締結契約時應考慮的要點進行說明,希望達成促進AI開發利用之目的。
本文為「經濟部產業技術司科技專案成果」
將於 2006年中實行之歐洲環保指令,規定輸入歐盟的電子產品材料、及其後續回收等作業流程,皆須符合廢電子電機設備(Waste Electronics and Electrical Equipment,WEEE)以及有毒物質禁制令(Restriction of Hazardous Substances,ROHS)兩大法規。為此,經濟部於27日宣布啟動「寰淨計畫(G計畫)」,將結合系統廠商、檢測驗證機構、資訊服務業者等單位,以系統廠商帶動下游供應商的方式,加速國內電腦廠商推出符合環保規範的產品,目前所知包括華碩、神達、大眾等電腦廠商,都已經投入了此計畫。 本次所涉廢電子電機設備 (WEEE) 法規,是關於廢棄電子、電機產品的回收再利用,規定自2005年8月13日後所生產的產品需由生產者進行回收,範圍含括家用設備、資訊通訊設備、玩具休閒與運動設備、醫療裝置等產品。 另一則是有毒物質禁制令 (ROHS),其明列自2006年7月後,製程、設備及材料處理研發禁止使用6種有毒物質,如鉛、汞、鎘等,內含六項管制物質的產品將不可在市面流通,屆時輸歐的電子、電機產品皆必須符合該標準。 另針對回收問題,經濟部表示將輔導國內廠商建立綠色產品回收體系及回收管理平台之示範系統,並在日後將 G計畫推廣對象擴及產險公司,以協助業者因應違反歐盟規範所生之求償索賠,並建立風險控管機制。
美政府將加強對抗盜版與仿冒美國歐巴馬政府在6月22日公布一份範圍廣泛的智慧財產執法聯合策略計畫(Joint Strategic Plan on Intellectual Property Enforcement),目的是希望協同聯邦各部門增強有關智慧財產權的執法力度,以打擊美國境內與境外盜版與仿冒日益嚴重的問題。 智慧財產執法協調員(Intellectual Property Enforcement Coordinator, IPEC)Victoria Espinel在報告前言指出,打擊仿冒和盜版需要聯邦強而有力的反應;作為全球創新領導者的美國已因為有些國家未能依照法律規定或國際條約來執法或採取不利美國之產業政策而被傷害。此計畫提出33個執法策略行動項目(enforcement strategy action items)來加強智慧財產執法,包括增加執法政策透明度以及美國境內、外執法行動的分享與報導、確保政府各層級間的執法效能與協調、加強美國智慧財產權的國際執法、確保安全的供應鏈以杜絕侵權產品輸入美國等。 舉例而言,該計畫非常關注外國網站線上侵權(online piracy)的問題,認為網際網路不應成為犯罪行為的工具,強調美國政府必須和外國政府、國際組織以及私部門共同合作對抗,並鼓勵內容擁有者(content owners)、ISP業者、廣告經紀商(advertising brokers)、付款處理業者(payment processors)和搜尋引擎業者在尊重合法競爭、言論自由與個人穩私之下,彼此合作謀求實際解決方案。根據報導,盜版已造成美國的影視業年度損失205億美元產值、工作者年度短少55億美元的收入、也減少了原本可帶來多於14萬個的工作職缺,結果使美國年度稅收短少了8.37億美元。
美國政府於2014年初提出幾點重要聲明,加強改善國家專利品質美國總統歐巴馬於2014年初對於美國專利改革及產業創新的規範做進一步的聲明。美國近年來針對專利法改革有許多大規模的法案實施,目的希望能提升整體美國產業,包括2011年通過的美國發明法案(Leahy-Smith America invents Act, AIA),目的希望能讓美國專利系統更加完善,保護專利權人及促進產業創新等目的。然許多專利仍被NPE或是專利蟑螂控訴侵權,反而讓專利權被用來當做專利訴訟的一個工具,花費更多的經費在訴訟及和解上,有違當初白宮要進行專利改革的初衷。 因此歐巴馬在年初為了能鼓勵創新及增加專利系統的品質而發布幾點執行聲明(executive actions): 1、著重prior art的檢索:USPTO開始著重prior art的搜尋,幫助專利審查能更詳盡。 2、增進專利審查人的技術訓練:提供教育專業訓練,讓專利審查人能隨時更新最新的技術,能在審查過程中對於技術上的認知能更專業。 3、Pro brono幫助:USPTO提供pro brono的幫助。許多發明人對於如何申請專利及如何使其專利被妥善保護等規範較缺乏相關資訊、或沒有資金聘請顧問協助此方面保護,因此USPTO會提供教育及實務訓練,讓這些較小的公司或資源較缺乏之發明人的專利得以獲得保護。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。