日本經產省公布AI、資料利用契約指引

  伴隨IoT和AI等技術發展,業者間被期待能合作透過資料創造新的附加價值及解決社會問題,惟在缺乏相關契約實務經驗的狀況下,如何締結契約成為應首要處理的課題。

  針對上述狀況,日本經濟產業省於2017年5月公布「資料利用權限契約指引1.0版」(データの利用権限に関する契約ガイドラインVer1.0),隨後又設置AI、資料契約指引檢討會(AI・データ契約ガイドライン検討会),展開後續修正檢討,在追加整理資料利用契約類型、AI開發利用之權利關係及責任關係等內容後,公布「AI、資料利用契約指引草案」(AI・データの利用に関する契約ガイドライン(案)),於2018年4月27日至5月26日間公開募集意見,並於2018年6月15日正式公布「AI、資料利用契約指引」(「AI・データの利用に関する契約ガイドライン)。

  「AI、資料利用契約指引」分為資料篇與AI篇。資料篇整理資料契約類型,將資料契約分為「資料提供型」、「資料創造型」和「資料共用型(平台型)」,說明個別契約架構及主要的法律問題,並提示契約條項及訂定各條項時應考慮的要點,希望能達成促進資料有效運用之目的。

  AI篇說明AI技術特性和基本概念,將AI開發契約依照開發流程分為(1)評估(assessment)階段;(2)概念驗證(Proof of Concept, PoC)階段;(3)開發階段;(4)進階學習階段,並針對各階段契約方式和締結契約時應考慮的要點進行說明,希望達成促進AI開發利用之目的。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 日本經產省公布AI、資料利用契約指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8073&no=66&tp=1 (最後瀏覽日:2025/10/03)
引註此篇文章
你可能還會想看
新加坡未來移動數據流量的疏通計畫之觀察

  Cisco於2012年2月發布預測2011至2016年全球行動數據流量將從2011年每月0.6 Exabytes上升至2016年每月10.8 Exabytes,以高達78%的年複合成長率(CAGR, Compound Annual Growth Rate)逐年攀升。根據此數據,新加坡亦預測其國內行動數據流量將以64%的年複合成長率,從2010年3.1Petabytes上升至2015年37 Petabytes。目前新加坡的電信業者為因應與日益龐大的數據流量,已著手嘗試各項商業模式,包含分級訂價(tiered pricing)、流量管理政策(traffic policy management control)、網路最佳化(network optimisation)、既有基礎建設升級(upgrading of existing infrastructure)以及採用如長期演進技術(LTE,Long Term Evolution)等新興技術和行動數據疏導策略(Mobile data offloading strategies)的發展。   另外職掌新加坡電信政策的新加坡資訊通信發展管理局(IDA Singapore),於2012年4月亦針對4G通訊系統及服務,提出頻譜重新分配之建議書,並諮詢各界之意見,以因應下階段全球移動數據領域之發展。IDA於建議書中計畫擬定以1800MHz、2.3GHz以及2.5GHz作為未來發展4G技術的主要頻段。為滿足產業所需之頻譜量,IDA預計於1800MHz頻段分別釋出2*70的對稱頻譜(paired spectrum)、於2.3GHz頻段釋出30MHz的非對稱頻譜(Unpaired Spectrum),而於2.5GHz頻段則同時釋出2*60MHz的對稱頻譜與30MHz的非對稱頻譜。除了釋出足夠頻譜外,為考量未來技術實驗以及電信業者發展全國性網路服務可能需求2*20MHz的對稱頻譜或20-30MHz的非對稱頻譜,IDA亦分別於前述三個頻段中預留2*5MHz(1800MHz)、20MHz(2.3MHz)以及於2.5MHz區段中預留2*10的對稱頻譜與20MHz的非對稱頻譜。   不過目前受到各國推崇的700MHz頻段卻未被新加坡納為現階段孕育4G技術的主要區域,同時對於900MHz是否於本次拍賣一同釋出以發展4G技術,新加坡政府仍持保留態度。對此,新加坡主要業者包括SingTel與StarHub皆已向iDA提交回覆建議書,表達此舉不符合國際未來發展趨勢並期待IDA能重新作出調整。

新加坡推出可退還投資抵減制度以維持國際競爭力

新加坡以相對較低的稅率及多元稅務優惠措施,成為國際布局亞洲市場優先選擇國家之一。然而,組織成員國包含新加坡在內之經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)為促進全球經濟與投資,2019年提出稅基侵蝕與利潤移轉(Base Erosion and Profit Shifting, BEPS)計畫,其中包含全球最低稅制,以確保跨國企業在全球繳納至少15%有效稅率。該計畫規範年營收超過7.5億歐元的跨國企業,若在組織成員國繳納稅率低於15%,須補繳差額稅。新加坡標準稅率雖為17%,但透過多項稅務優惠,實際稅率可降至5-10%,因此OECD新制對新加坡影響重大。 為維持國際競爭力,新加坡在2024年推出可退還投資抵減(Refundable Investment Credit, RIC),以現金補助取代傳統稅收優惠,避免抵觸最低稅率規範。RIC適用於新加坡註冊公司或海外公司之分公司,針對RIC支持活動給予補助。RIC支持六類活動,包括新產能建設、數位與專業服務、總部或卓越中心設立、貿易公司擴展、研發創新及減碳方案,支出範圍涵蓋資本、人力、培訓、專業費用、無形資產、在地委外、材料及物流等。而其補助期間最長10年,最高可取得支持項目之支出50%,用於抵銷企業所得稅,剩餘RIC四年後可退還現金。 新加坡透過直接補助特定項目支出之部分比例,用於抵銷企業所得稅,既符合OECD要求,又能持續吸引國際投資。新加坡地緣與臺灣接近,為吸引海外投資之直接競爭關係,而新加坡在企業所得稅及稅務抵減方案都較臺灣優惠。若臺灣希望成為跨國企業首選,需密切關注新加坡政策變化,並提出更具吸引力的獎勵措施,方能增加國際投資意願。

歐盟公布2016年歐洲創新計分板報告

  為確保各會員國能有效執行歐盟科研架構計畫(Horizon 2020),歐盟執委會每年針對各會員國整體創新能力及研發活動進行評估,據此研提創新競爭力排名,並定期公布歐盟創新計分板報告(European Innovation Scoreboard, EIS)。而觀諸最新公布2016歐盟創新計分板報告((European Innovation Scoreboard 2016),可歸納以下三項要點: (一) 2016歐盟創新研發能力成長趨緩   由於研發資金政策之限制以及英國脫歐影響下,相較於去年(2015)歐盟創新計分板報告(European Innovation Scoreboard 2015, EIS)之統計,今年度(2016)歐盟整體之創新研發能力成長趨緩。 (二) 2016創新研發先驅仍為瑞典,部分國家仍有大幅度之成長   而今年之歐盟創新計分板報告在整體創新競爭力排名上,第一名仍為瑞典,其次則為丹麥,芬蘭,德國和荷蘭。而相較於去年之排名,拉脫維亞、馬爾他、立陶宛、荷蘭等國家則有顯著之成長。 (三) 在個別指標項目中,會員國創新表現亦有不同   此外,獨立創新指標項目中,各會員國亦有不同之創新表現,例如:在「創新人力資源」及「學術研究項目」中,由瑞典榮獲最具競爭力之國家;而在「創新財政環境」項目中第一名為芬蘭;「創新私人投資」、「創新網絡」及「中小企業創新」等三大項目中,則分別由德國、比利時及愛爾蘭奪冠。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP