英國上議院人工智慧專責委員會提出AI應用影響報告並提出未來政策建議

  英國上議院人工智慧專責委員會(Select Committee on Artificial Intelligence)2018年4月18日公開「AI在英國:準備、意願與可能性?(AI in the UK: ready, willing and able?)」報告,針對AI可能產生的影響與議題提出政策建議。

  委員會建議為避免AI的系統與應用上出現偏頗,應注重大量資訊蒐集之方式;無論是企業或學術界,皆應於人民隱私獲得保障之情況下方有合理近用數據資訊的權利。因此為建立保護框架與相關機制,其呼籲政府應主動檢視潛在英國中大型科技公司壟斷數據之可能性;為使AI的發展具有可理解性和避免產生偏見,政府應提供誘因發展審查AI領域中資訊應用之方法,並鼓勵增加AI人才訓練與招募的多元性。

  再者,為促進AI應用之意識與了解,委員會建議產業應建立機制,知會消費者其應用AI做出敏感決策的時機。為因應AI對就業市場之衝擊,建議利用如國家再訓練方案發展再訓練之計畫,並於早期教育中即加入AI教育;並促進公部門AI之發展與布建,特別於健康照顧應用層面。另外,針對AI失靈可能性,應釐清目前法律領域是否足以因應其失靈所造成之損害,並應提供資金進行更進一步之研究,特別於網路安全風險之面向。

  本報告並期待建立AI共通之倫理原則,為未來AI相關管制奠定初步基礎與框架。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 英國上議院人工智慧專責委員會提出AI應用影響報告並提出未來政策建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8093&no=66&tp=1 (最後瀏覽日:2025/07/06)
引註此篇文章
你可能還會想看
德國總理梅克爾敦促歐盟立法允許「資訊追蹤(data tracking)」,以有效打擊恐怖主義

  2014年7月歐盟法院宣告2006年起施行的「資料保留指令」無效,該指令允許警察機關使用私人通聯記錄,但不允許揭示通訊內容。資料保留指令之所以被歐盟法院廢止,起因於不合乎比例原則及沒有充分的保護措施,該指令規定歐盟成員國必須強制規定電信公司必須保留客戶最近六個月到十二個月的通聯紀錄,不過在歐盟法院廢止指令之前,德國憲法法院在2010年時就已經以違反憲法為由停止執行指令。   惟在2015年1月,伊斯蘭激進主義份子的恐怖攻擊事件,共12人被射殺。因此德國總理梅克爾2015年1月在下議院針對該恐怖事件發表演說,雖因美國的史諾登事件,揭露美國政府大量監聽私人通訊和監視網路流量的行動,而引起了德國人對隱私權保護的關注,但梅克爾表示德國各層級的部會首長都同意有使用私人通聯記錄的需要、使嫌疑犯的通聯記錄能夠被警方用來偵查犯罪,但應該由法律規範資料保留的期間限制,她敦促各界向歐盟委員會施加壓力,重新訂定資料保留指令,使各歐盟成員國能修正國內法律。   歐盟委員會正在評估此法制議題,並考慮向歐盟議會、各成員國、民間團體、執法部門和個資保護組織間建立開放式對話,決定是否有需要訂定新指令;但德國司法部長並不贊成梅克爾擴大監督人民通訊的想法,認為這是過於倉促的行動,而且除了資訊記錄留存外,德國政府也儲存所有媒體資料並限制媒體自由,他認為這並不合適。   目前英國國內保守黨和自由黨現正為新修訂的通訊資料法,為人民隱私權的保護範圍爭論不休,而美國由於近年受到不少駭客攻擊,故美國總統歐巴馬採取與梅克爾相似的立場,希望能擴張執法機關的權力,公開提倡強化美國網路安全相關法規。

美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

歐盟發佈「降低高速電子通訊網路建置成本」草案

美國交通部發布國家道路安全戰略,建立五大核心目標期待實現道路零死亡願景

  美國交通部(U.S. Department of Transportation)於2022年1月27日發布「國家道路安全戰略」(National Roadway Safety Strategy, NRSS),向道路零死亡的長期目標邁出第一步。NRSS採取「安全系統方法」(Safe System approach)作為解決道路安全問題的指導性框架,其內容涵蓋行為干預(behavioral interventions)、道路應對措施(roadway countermeasures)、法律與政策之執行、車輛安全特性與性能,及緊急醫療照護等層面。不同於傳統安全方法,安全系統方法承認人為錯誤與人性脆弱的事實,基於道路死亡應可預防之原則,利用可提前準備的主動工具(Proactive Tools)預先識別並解決交通系統中的問題,並且建立一套能有效解決或降低風險的備援系統(redundant system),以確保某一環節發生故障時,其餘部份仍可正常運作。   NRSS將以五大核心目標為主軸,規劃全面性的安全措施,以實現道路零死亡願景。上述五大核心目標包括: (1)更安全的人們(safer people):鼓勵用路人採取安全、負責之行為,避免酒駕或毒駕等危險行為。 (2)更安全的道路(safer roads):設計可減少人為錯誤之道路環境,提高脆弱用路人安全移動之可能性。 (3)更安全的車輛(safer vehicles):透過改進既有技術與設備,並擴大對有效防止碰撞及使影響最小化的車輛技術與功能之使用,提高車輛安全性並降低碰撞頻率,例如:透過先進駕駛輔助系統(Advanced Driver. Assistance Systems, ADAS)預防或減輕碰撞的影響;或是利用偏離車道警示系統對車輛進行監控與紀錄,如檢測到車輛偏離車道,則立即向駕駛發出警報。此外應建立公共資訊資料庫,以便提供資訊幫助車輛安全行駛。 (4)更安全的速度(safer speeds):透過結合環境的道路設計、教育與推廣活動,以及活用自動測速器、依路段環境進行速限等方式,有效控制車輛行駛速度。 (5)事故後照護(post-crash care):透過完善緊急醫療照護提高事故存活率,並落實交通事故管理,避免事故再次發生。

TOP