日本著作權法修正促進人工智慧開發

  2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。

  日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。

  本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。

  惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。

相關連結
※ 日本著作權法修正促進人工智慧開發, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8112&no=57&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

全國農民工會(NFU)向美國食品藥物管理局(FDA)正式提交食品安全現代化法案(FSMA)意見書

   自2011年歐巴馬政府頒布《食品安全現代化法》(Food Safety Modernization Act, FSMA)以來,美國食品藥物管理局(Food and Drug Administration, FDA)研擬多項配套法規和施行細則藉以強化FSMA食品安全標準之具體落實。此外,為形成產業、工協會各方之修法共識,FDA開啟為期一年之意見徵集期間。另於今年度(2013)11月15日,美國全國農民工會(National Farmers Union, NFU)正式向美國食品藥物管理局提交食品安全現代化法案(Food Safety Modernization Act, FSMA)具體意見書,該項意見書要點歸納如下: 1.全國農民工會表示此修法方向,有助於事前預防食源性疾病(foodborne illness)擴散與食品風險之控管,有效達成法規建構之目的。 2.由於配套法規涉及食品鏈供應商、農民與生產者之具體責任,建議政府應評估多階段意見諮詢期(comment period)之規劃,廣納各利益相關者具體建議。 3.全國農民工會針對農業用水的品質標準、檢測措施與規範提出不同之見解,亦建議縮短農產品禁用生物土壤改良劑的時間。

澳洲新南威爾斯政府將推動創新採購與擴大監理沙盒適用範圍

  澳洲經濟核心所在之新南威爾斯州(首府雪梨)於2016年11月30日提出新南威爾斯創新戰略(The NSW Innovation Strategy),嘗試整合政府公部門、營利組織、非營利組織、教育及研究機構、社群或個人共同面對新的經濟、社會、環保議題之挑戰,藉由投入新型態的公共投資(the new forms of public investment),協助發明與創新者得以將他們好的創意轉換為成功的商品與服務。此外,不僅要發展未來產業創造工作機會,更要為此預先儲備能夠發揮高科技發展所需技能之人力資源。   基此,新南威爾斯政府的創新戰略將著重於下列四項目標的達成: (1)政府成為創新領導者(Government as an innovation leader) (2)促進和運用研究發展(Fostering and leveraging research and development) (3)未來技能養成(Skills for the future) (4)創業者的家園(A home for entrepreneurs)   同時,具體執行方法,在機制面上首先將啟動新南威爾斯創新窗口服務(NSW Innovation Concierge Service),與澳洲跨部會創新委員會協調運作,以確保重要意見並未遺漏,並且讓專家及決策者可考量到各種可能。   而其他執行方法中,在法制面上影響較大者是在澳洲政府推動金融科技之監理沙盒制度的基礎上,嘗試擴大適用範圍不限於金融業之監理法令,可及於創新產業之法令試作。另外,也將針對採購規範進行修正,使政府與民間可以更便於運用政府採購促進產業發展與扶助中小企業,同時滿足政府提供公共服務之需求。更甚者,將推動對創新商品及服務的政府採購,藉由提供一定市場需求,穩定新創科技及業者之發展。

美國對於智慧聯網 IoT 環境隱私保障展開立法工作

  有鑒於智慧聯網IoT環境下,許多智慧型手持裝置及行動通訊裝置,大量蒐集消費者資訊之隱私權暨資訊安全考量,美國國會於2013年5月10日提出「應用軟體隱私暨資訊安全保護法草案」(Application Privacy, Protection, and Security Act of 2013, APPS Act of 2013, H.R. 1913)進行審議。「應用軟體隱私暨資訊安全保護法草案」草案針對應用軟體(Application)在蒐集消費者資訊前,如何落實「同意」機制,乃強制行動通訊裝置應用軟體開發商(developer)應:(1)提供使用者個人資料蒐集、使用、儲存及公開之通知(notice),而該通知含括所蒐集個人資料之種類、使用目的、有償公開第三者之類別及資料儲存等;(2)取得使用者之同意(consent);消費者依據該草案亦有權撤銷其「同意」(withdrawal of consent)。此外,草案乃強制要求該行動通訊裝置應用軟體開發商,就非法近取之個人資料及經去識別化應用軟體蒐集之個人資料,應採取合理及適當之防衛措施(security measures on personal data and de-identified data)。   並且,針對網路環境下隱私權保護議題,更早之前,美國國會於2013年2月28日提出「線上禁止追蹤法草案」(Do-Not-Track Online Act of 2013) 進行審議。「線上禁止追蹤法草案」草案乃要求聯邦貿易委員會(FTC),就透過個人線上活動追蹤,以蒐集、使用個人資料之行為態樣,進行管制。該管制模式謹據以要求如下:(1)被搜集資料個人應收到簡單、明確、並載明資料使用目的之通知(clear, conspicuous and accurate notice and use of such information),而個人就該通知應予明白之同意(affirmative consent);(2)FTC未來在訂定標準規範時,應(shall)考量所被搜集之資料,是否在匿(隱)名基礎上處理之,遂該資料無法有效被聯結(指認)到特定個人或裝置上;此外,消費者當享有資料不被蒐集的權利(expressed preference by individual not to have personal information collected)。該草案並就違反之個人,設定最高15,000,000美元損害賠償規定。

TOP