FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案

  美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」

  為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。

  根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括:

(1) 醫療器械可能帶來好處程度。
(2) 醫療器械存在的風險程度。
(3) 關於替代治療或診斷的利益-風險之不確定程度。
(4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。
(5) 公共衛生需求的程度。
(6) 依據臨床證據可支持上市前之可行性。
(7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。
(8) 上市後緩解措施的有效性。
(9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。)
(10) 對於早期患者訪問醫療器械的可能帶來的益處。

  本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。

相關連結
※ FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8116&no=57&tp=1 (最後瀏覽日:2026/01/03)
引註此篇文章
你可能還會想看
老歌翻唱!手握著作權轉讓證明書便可放心?-簡評智慧財產法院 101 年度民著上字第 9 號判決

概念驗證中心(Proof of Concept Center, PoCC)

  概念驗證中心(Proof of Concept Center, PoCC)源自美國研究型大學各校為加速大學科研成果商業化,於內部建立的專業型機構。全美第一所PoCC是2001年設立於加州大學聖地牙哥分校的「里比西中心」(the William J. von Liebig)。   為了因應美國大學科研成果商業化過程中所遇到的阻礙,例如:資金與資源缺乏導致研發人員動力不足、研發人員對於市場需求資訊不對等、技術開發提升緩慢以及政府激勵政策不足等問題。PoCC以解決大學與企業之間存在的各種差異與衝突為目標,並透過下列手段強化科技成果商業化動力,提升商業化績效:1、通過種子基金資助,為無法獲得資金支持的早期研究提供經費挹注;2、為大學科研成果商業化提供市場顧問與技術開發諮詢,以及智慧財產權保護等諮商;3、創業人才教育及培訓,促進創業文化並進行創業教育,以增強大學與產業協同創新能力。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

基因專利新發展

  隨著基因工程的逐漸成熟,關於現代生物技術可否取得專利,引起激烈的公開辯論。為了澄清這些問題,歐盟和美國曾採取重要的立法和行政措施,如歐洲議會和理事會關於生物技術發明的98 / 44 / EC指令 ,及美國專利商標局2001年1月5日所修改的確認基因有關發明實用性指南(Guidelines For Determining Utility Of Gene-Related Inventions of 5 January 2001)。   然而,美國最高法院於2013年《Association for Molecular Pathology v. Myriad Genetics, Inc.》一案中認為,自然發生的DNA片段是自然界的產物,不因為其經分離而具有可專利適格性,但認為cDNA(complementary DNA,簡稱cDNA)具有可專利適格性,因為其並非自然發生。該判決強調Myriad Genetics, Inc.並未創造或改變任何BRCA1和BRCA2基因編碼的遺傳信息,即法院承Myriad Genetics, Inc.發現了一項重要且有用的基因,但該等基因從其週邊遺傳物質分離並非一種發明行為。不過,法院也認為“與經分離的DNA片段屬於天然發生者不同,cDNA則具有可專利性。”因此,“cDNA非自然的產物,且根據美國專利法第101條具有可專利性。”   其次,美國於2012年3月《Mayo Collaborative Services v. Prometheus Laboratories》案認為,檢測方法僅為揭露一項自然法則,即人體代謝特定藥物後、特定代謝產物在血液中濃度與投與藥物劑量發揮藥效或產生副作用的可能性間的關聯性。即使需要人類行為(投以藥物)來促使該關聯性在特定人體中展現,但該關聯性本身是獨立於任何人類行為之外而存在,是藥物被人體代謝的結果,因此,全部應為自然過程。而不具有可專利性。

TOP