FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案

  美國食品和藥物管理局(FDA)於2018年9月6日發布關於「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案。」

  為滿足FDA促進公共健康的使命,醫療器械上市前核准(PMA)通常涉及較高的不確定性,因此本指引是適當的解決利益風險的判定以支持FDA的決策。包含考量患病群願意接受醫療器械帶來的益處及風險之更多不確定性,特別是沒有可接受的替代治療方案時。

  根據指引草案,FDA依據具體情況,判定其利益-風險的適當程度之不確定性,包括:

(1) 醫療器械可能帶來好處程度。
(2) 醫療器械存在的風險程度。
(3) 關於替代治療或診斷的利益-風險之不確定程度。
(4) 如果可能,需瞭解患者對醫療器械可能帶來的益處和風險之不確定性觀點。
(5) 公共衛生需求的程度。
(6) 依據臨床證據可支持上市前之可行性。
(7) 能夠減少或解決醫療器械的上市後利益-風險留下之不確定性。
(8) 上市後緩解措施的有效性。
(9) 建立決策類型。(如上市前核准(PMA)和人道用途器材免除(HDE)的核准標準不同。)
(10) 對於早期患者訪問醫療器械的可能帶來的益處。

  本指引草案中,FDA基於考量有關醫療器械臨床/非臨床訊息之利益風險,需與FDA的規範、監管機關和要求要有一致性。

相關連結
※ FDA發布「制定醫療器械在上市前核准(PMA)、低風險創新器材(De Novo)分類和人道用途器材免除(HDE)的利益-風險決策之不確定性考量指引草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8116&no=57&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國音樂授權制度邁向新里程碑:集體授權組織MLC將於後年正式運行!

  美國「音樂現代化法案」(Music Modernization Act,簡稱 MMA) 於2018年10月由總統川普簽署成為有效法律之後,於今年(2019)9月17日正式對外發布消息,其依照MMA之規定,美國著作權局已於今年7月8日指定由「美國音樂發行協會」(National Music Publishers Association,簡稱NMPA)成立「機械式集體授權組織」(The Mechanical Licensing Collective,簡稱MLC)。NMPA係全美音樂發行商之貿易協會,早於1917年運行至今,現被指定成立MLC,擬於2021年1月正式開始進行全美音樂之「概括授權」(blanket license),並維運前所未有的「透明化資料庫」,期能對接音樂串流平台,促使音樂作品比對相關著作權之權利人,藉以有效率且準確地支付相關授權金給詞曲創作人和發行人,且串流平台業者只要確實遵守MMA之概括授權與MLC之運作方式,即免於侵權責任MLC之組織體編制與人員名單資訊,亦透明地揭示於官網,其設有MLC董事會(由BMG、SONY、華納音樂等背景之人員擔任),以及「無人認領授權金監督委員會」、「爭端解決委員會」、「營運顧問委員會」等三個委員會,各委員均由音樂著作權人或詞曲創作等人擔任。   MMA立法之初,試圖創設一全新、單一窗口非營利組織,並建置符合現代科技的數位資料庫,來解決音樂授權的痛點。而今MLC即將於後年1月正式運行,在數位時代借力科技,帶領音樂授權邁向新里程碑!

澳洲競爭及消費者委員會(ACCC)就大型數位平臺對於消費者權益和市場競爭的問題提出建言

澳洲競爭及消費者委員會(Australian Competition and Consumer Commission, ACCC)於2022年11月發佈了數位平臺第五份調查報告。該報告係ACCC受澳洲政府委託,於2020年起對數位平臺相關的消費者權益和市場競爭問題的調查,本次報告將重點放在監管如何改革。主要提供的建議和警示可分為五個方向: 1.反競爭行為 大型數位平臺擁有巨大的市場力量和重要的財政資源,佔據主導地位的數位平臺公司有能力和動機透過排他性行為和收購潛在競爭對手,以維持其在市場中的優勢地位。 2.消費者和中小企業保護不足 ACCC於2022年所發佈的最新報告與其自2017年開始進行數位平臺研究起所發布的其他報告一致,皆指出數位平臺的服務有以下潛在危害: ● 利用消費者偏見或引導消費者的方式向消費者提供服務。 ● 數位平臺上的詐騙明顯且持續增加。 ● 來自應用程式商店提供的不當和欺詐性應用程式的危害。 ● 創建、購買和銷售虛假評論以及以其他方式操縱評論的做法。 ● 欠缺救濟和爭議解決的途徑。 3.保護消費者的新措施 澳洲現有的競爭和消費者法律已難以因應數位平臺市場所面臨的消費者權益侵害和競爭危害等問題。該報告建議進行立法改革,具體如下: ● 商業市場中的消費者保護措施,包括禁止不公平交易行為和不公平契約條款。 ● 針對數位平臺的消費者爭議措施,包括強制規定內部和外部的爭議解決流程,以及平臺對詐騙、有害程式和虛假評論的預防和刪除義務。 ● 建立新的競爭框架,使受指定的數位平臺提供服務時受到適用於此一領域的強制性法規拘束。 ● 受指定數位平臺將應遵循之新框架和守則,以遵守競爭義務,避免其在市場中的反競爭行為,如競爭行為中的自我偏好(self-preference)等。 4.管轄 該調查報告亦指出適當且明確的管轄權限劃分對於新的監管框架來說非常重要,應在考慮到其專業知識和權責範圍的前提下,將監管責任分配給正確的管理機構,並且這些監管在流程中的各個環節都應受到適當的監督。 對於新的競爭框架及監管措施,ACCC建議可以參考英國當前的制度設計;英國政府成立了數位市場部門(Digital Markets Unit, DMU),該部門隸屬於競爭與市場管理局(Competition and Markets Authority),DMU負責監督受指定數位平臺,並在符合公平貿易、選擇開放、透明及信任等前提之下,DMU得視各個公司不同的情況對其進行特定的要求,如建立面對非法內容、對成人或未成年人有害內容時的應對措施等。 5.與國際方針的一致性 過去,澳洲在數位平臺監管策略採取了領先國際的創新行動,透過實施《新聞媒體議價法》(News Media Bargaining Code),要求數位平臺為新聞內容付費。但未來澳洲政府最終採用的策略將可能仿效他國經驗或是依循國際間共通模式,如英國推行中的《網路安全法》(Online Safety Bill)或歐盟的《數位市場法》(Digital Market Act)和《數位服務法》(Digital Services Act),而非獨樹一幟。 澳洲數位平臺監管策略之後續變化與進展值得持續追蹤,以做為我國數位平臺治理政策之借鏡。

中國大陸科學技術部《關於促進新型研發機構發展的指導意見》

  中國大陸科學技術部於2019年9月12日公布《關於促進新型研發機構發展的指導意見》,目標是提升國家創新體系整體效能。在2016年5月中國大陸國務院發布的《第十三個五年規劃綱要》提及,為強化科技創新的引導作用,必須優化創新組織體系,藉由發展市場導向的「新型研發機構」,推動跨領域偕同創新。故「新型研發機構」必須聚焦在科技創新需求,主要從事科學技術創新與研發服務,具備投資主體多元化、管理制度現代化、營運機制市場化、用人機制靈活的獨立法人機構,得依法註冊為科技類民辦非企業單位(社會服務機構)、事業單位和企業。   中國大陸科學技術部本次公布的指導意見,主要係針對「新型研發機構」在未來政策上之具體運作與發展方向提供指引,包括新型研發機構能夠申報的國家科研項目、鼓勵設立科技類民辦非企業單位的新型研發機構政策、政府獎勵科研措施等說明。 (一) 新型研發機構申報國家科研項目   本指導意見第11條,符合條件的新型研發機構,可申報國家科技重大專項、國家重點研發計劃、國家自然科學基金等各類政府科技項目、科技創新基地和人才計劃。 (二) 鼓勵設立科技類民辦非企業單位的新型研發機構   本指導意見第12條,科技類民辦非企業單位應依法進行登記管理,營運所得利潤主要用於機構管理運作、建設發展和研發創新等,出資方不得分紅。並得依據《中華人民共和國企業所得稅法》及非營利組織企業所得稅、職務科技成果轉化個人所得稅、科技創新進口稅收等規定,享受稅收優惠。 (三) 支持與獎勵科研措施   本指導意見第14條,地方政府得根據區域創新發展需要,支持新型研發機構建設發展,包括給予基礎建設、購買科研設備、人才住房配套服務;採用創新券(innovation vouchers),推動企業向新型研發機構購買研發創新服務。第15條,更鼓勵透過國家科技成果轉化引導基金,支持新型研發機構推動科研成果轉化。

TOP