個人健康資料共享向為英國資料保護爭議。2017年英國資訊專員辦公室(ICO)認定Google旗下人工智慧部門DeepMind與英國國家醫療服務體系(NHS)的資料共享協議違反英國資料保護法後,英國衛生部(Department of Health and Social Care)於今年(2018)5月修正施行新「國家資料退出指令」(National data opt-out Direction 2018),英國健康與社會照護相關機構得參考國家醫療服務體系(NHS)10月公布之國家資料退出操作政策指導文件(National Data Opt-out Operational Policy Guidance Document)規劃病患退出權行使機制。
該指導文件主要在闡釋英國病患退出權行使之整體政策,以及具體落實建議作法,例如:
NHS已於今年9月完成國家資料退出服務之資料保護影響評估(DPIA),評估結果認為非屬高風險,因此不會向ICO諮詢資料保護風險。後續英國相關機構應配合於2020年5月前完成病患資料共享退出機制之建置。
近年來,物聯網(Internet of Things, IOT)技術快速發展,隨著大勢所趨掀起一波專利申請熱潮。申請量增加的同時,亦代表相關技術的智財權使用者對於該領域的專利資訊需求大幅增加。然而,目前全球還沒有與此領域相關的專利分類系統協助大眾搜尋這些技術資訊。 有鑑於此,日本特許廳(Japan Patent Office,簡稱JPO)在今(2016)年11月14日針對物聯網技術領域全球首創新的專利分類ZIT。自2017年起,將可透過JPO的J-PlatPat系統利用此專利分類,檢索及分析物聯網相關的專利資訊。此專利分類能夠協助專利申請者更有效地檢索相關先前技術,亦能同時讓相關業者及專業人士了解當前物聯網技術的發展趨勢。 JPO不僅針對日本當地,亦努力與其他專利局合作。在世界五大專利局(簡稱IP5):包含歐洲專利局(European Patent Office,簡稱EPO)、韓國智慧財產局(Korean Intellectual Property Office,簡稱KIPO)、中國大陸知識產權局(the State Intellectual Property Office of the People’s Republic of China,簡稱SIPO)、美國專利商標局(The United States Patent and Trademark Office,簡稱USPTO)及JPO的專利局首長會議,以及世界智慧財產權組織(World Intellectual Property Organization,簡稱WIPO)的國際會議上,JPO積極鼓勵各國多加使用ZIT專利分類。 因應日本政府今年提出第四次産業革命戰略,瞄準三大核心技術其中亦包含了物聯網技術,JPO現在首創新的專利分類ZIT,更能提升物聯網的相關技術研發,為物聯網產業劃下重要里程碑。
英政府推動開源碼計劃由英國政府所資助成立的一項計畫,希望透過開放原始碼廠商目錄及程式碼資料庫的建立等措施,加速公家單位對開放原始碼軟體的採用。這項名為「開放原始碼學院」( Open Source Academy )的計畫,是由副首相辦公室( Office of the Deputy Prime Minister )的電子創新投資計畫所贊助,預計在本月內將正式宣佈。 參與該計畫的開放原始碼協會( Open Source Consortium )執行總監表示,英國的公家機關在開放原始碼的採用上落後於歐洲各國,而這項計畫將改變目前的現況。地方政府已經可以透過網站開始分享程式碼,例如「地方政府軟體協會」( Local Authority Software Consortium )的網站。這項計畫裡的其他專案還包括了政府機構的入口網站計畫,可藉以尋找開放原始碼供應商的資訊;以及開放原始碼顧問的專業鑑定模式。
加州通過學生線上個人資料保護法案(the Student Online Personal Information Protection Act)隨著越來越多學校使用線上教育技術產品發展教學課程,並透過第三方服務提供者之技術蒐集學生的學習進度等相關資訊,資訊洩漏、駭客入侵、敏感資訊誤用或濫用等問題也因應而生。於2014年9月30日,加州州長Jerry Brown宣布幾項對加州居民隱私保護具有重要突破的法案,其中最引人關注的便是編號SB1177號法案,又稱學生線上個人資料保護法案(the Student Online Personal Information Protection Act,簡稱SOPIPA)。 SOPIPA禁止K-12學生線上教育服務經營者(operator)為下列行為,包括:(一)禁止線上教育服務經營者利用因提供服務所得之個人資料為目標行為(targeted marketing)、(二)禁止線上教育服務經營者基於非教育目的,運用因提供服務所得之個人資料為學生資料之串檔、(三)販賣學生之資訊、以及(四)除另有規定,禁止披露涵蓋資訊(covered information)。所稱之涵蓋資訊係指由K-12教育機構之雇員或學生所提供或製作之個人化可識別資訊(personally identifiable information),或是線上教育服務經營者因提供服務所得之描述性或可識別之資訊(descriptive or identifiable information)。 此外,SOPIPA線上教育服務經營者應採取適當安全的維護措施,以確保持有之涵蓋資訊的安全。同時,線上教育服務經營者應在有關教育機構的要求下,刪除學生之涵蓋資訊。 SOPIPA預計於2016年1月1日生效,將適用於與K-12學校簽有契約之大型教育技術與雲端服務提供者,同時也將適用於未與K-12學校簽署契約,但為該學校所使用之小型K-12技術網站、服務或APP等等。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」