英國於2018年7月通過自動與電動車法(Automated and Electric Vehicles Act 2018),對自動與電動車輛之定義、保險議題以及電動車充電基礎設施進行規範。
針對自駕車之保險議題,該法採取「單一保險人模式」(Single Insurer Model),無論是駕駛人自行駕駛或自動駕駛,駕駛人均應購買自駕車保險,讓所有用路人對於可能之安全事故均有保險可涵蓋並追溯責任。本法其他重要規定如下;
於電動車充電基礎設施之部分,該法之目的則是確保公共充電站適用於所有市面上之電動車輛,並就費用、付費方式以及相關安全標準進行規範,以增進消費者之信任。該法第20條並授權主管機關訂定相關授權辦法,以達上述目標。
本文為「經濟部產業技術司科技專案成果」
陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本IPA/SEC公佈「IoT高信賴化機能編」指導手冊日本獨立行政法人情報處理推進機構(IPA/SEC)於2016年3月公佈「聯繫世界之開發指引」,並於2017年5月8日推出「IoT高信賴化機能編」指導手冊,具體描述上開指引中有關技術面之部份,並羅列開發IoT機器、系統時所需之安全元件與機能。該手冊分為兩大部份,第一部份為開發安全的IoT機器和關聯系統所應具備之安全元件與機能,除定義何謂「IoT高信賴化機能」外,亦從維修、運用角度出發,整理開發者在設計階段須考慮之系統元件,並依照開始、預防、檢查、回復、結束等五大項目進行分類。第二部份則列出五個在IoT領域進行系統連接之案例,如車輛和住宅IoT系統的連接、住家內IoT機器之連接、產業用機器人與電力管理系統之連接等,並介紹案例中可能產生的風險,以及對應該風險之機能。IPA/SEC希望上開指引能夠作為日後國際間制定IoT國際標準的參考資料。
德國公布NAP II,要求能源及工業部門減少二氧化碳排放量為達到京都議定書 將二氧化碳排放量減量控制到 1990 年排放量的 20 %目標, 歐盟持續祭出多項政策措施,近一年來並已實施碳排放證交易機制。 所謂的碳排放證交易機制係指,業者若能成功減少污染即可出售多餘的碳排放證,而排放過多二氧化碳者卻必須購買碳排放證。為達成前揭目標,所有歐盟會員國均應依據歐盟的國家分配計畫( Nationalen Allokationsplan ),於其內國推動實施。 在歐盟架構下,德國政府於日前公布第二階段的 NAP II ,以接續目前第一階段、將持續至 2007 年的 NAP I 。透過 NAP I 及 NAP II ,所有產業-包括能源、工業、交通( Verkehr )、家戶( Haushalte )、以及手工業( Gewerbe )、商業及服務業-均將被要求共同致力於二氧化碳減量的目標,德國政府也一一就各產業訂出排放標準。 基本上, NAP II 係有關德國能源業和工業自 2008 年至 2012 年止有關二氧化碳排放量的基本原則,重點在能源業及工業的二氧化碳排放控制,此乃因這兩個產業每年的二氧化碳排放量高達總排放量的 60 %。 NAP II 對工業的減量要求較為寬厚,只須減少百分之一點二五的排放量,能源業卻必須減量百分之十五。德國環保部長表示,工業面對市場上激烈的競爭,可以少負擔一些氣候保護的成本。此外,為了鼓勵能源業者投資環保設備減少污染,可同時生產電力和熱能的電廠二氧化碳排放量管制將比照工業,反之,老舊的高污染燃煤電廠獲得的碳排放證,比起一般的能源業還要再縮減百分之十五。 雖則 NAP I 、 NAP II 的實施對德國整體產業均形成衝擊,不過這個從環保概念出發的政策,卻也將促使德國產業在未來幾年產生結構性的調整,政府與民間部門為了達到二氧化碳排放減量的目標,必將投入新技術的研究與發展,進而帶動永續、潔能、環境友善( eco-friendly )及綠色科技的發展。
美國發布《新興科技優先審查架構》 加速政府機構導入AI技術美國聯邦總務署(General Service Administration)於2024年6月27日發布《新興科技優先審查架構》(Emerging Technologies Prioritization Framework),該架構係為回應拜登總統針對AI安全所提出之第14110號行政命令,而在「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下簡稱FedRAMP)底下所設置之措施。 一般而言,雲端服務供應商(cloud service providers)若欲將其產品提供予政府單位使用,需依FedRAMP相關規範等候審查。《新興科技優先審查架構》則例外開放,使提供「新興科技」產品之雲端服務供應商得視情況優先審查。 現階段《新興科技優先審查架構》所定義之「新興科技」係為提供下列四種功能的生成式AI技術: 1.聊天介面(chat interface):提供對話式聊天介面的產品。允許用戶輸入提示詞(prompts),然後利用大型語言模型產出內容。 2.程式碼生成與除錯工具(code generation and debugging tools):軟體開發人員用來協助他們開發和除錯軟體的工具。 3.圖片生成(prompt-based image generators):能根據使用者輸入之文字或圖像而產生新圖像或影像的產品。 4.通用應用程式介面(general purpose API):基於API技術將前述三項功能加以整合的產品。 美國政府為挑選最具影響力的產品,要求雲端服務供應商繳交相關資料以利審查,例如公開的模型卡(model card)。模型卡應詳細說明模型的細節、用途、偏見和風險,以及資料、流程和參數等訓練細節。此外,模型卡應包含評估因素、指標和結果,包括所使用的評估基準。 《新興科技優先審查架構》第一波的申請開放至2024年8月31日,且FedRAMP將於9月30日宣布優先名單。這項措施將使生成式AI技術能夠以更快的速度被導入政府服務之中。