何謂「國立研究開發法人」?

  國立研究開發法人為日本法制度下三種獨立行政法人類型的其中之一(其餘兩種為中期目標管理法人、與行政執行法人),任務乃是獨立於國家,發揮一定程度之自主性與自律性,從事在國民生活或社會經濟安定性等公益目的上所必要,但不須由國家為主體來執行的科學技術之實驗、研究與開發,並且這些科技研發業務,係基於具備一定中長期政策目標之計畫而進行,目的在於最大限度地確保得以提升國家科技水準、同時攸關經濟健全發展及其他公益的研發成果,並被期待產出得參與國際競爭的世界頂尖水準之新創科技,作為國家戰略的一環,同時專注於基礎科學與國家核心技術的研發。但在國立研究開發法人中,其所屬職員的身分並非公務員。

  現在日本共有將近30個獨立研究開發法人,如日本醫療研究開發機構、森林研究‧整備機構‧新能源‧產業技術總合開發機構(NEDO)、國立環境研究所等。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「國立研究開發法人」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8159&no=66&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

Facebook支付5.5億美元解決涉及侵犯隱私的訴訟案

  使用過Facebook(臉書)上傳照片時,不難發現其內建功能可透過臉部辨識「自動標記」(tag)好友的功能,建議用戶標記照片內的人物,而自從該功能於2011年啟用後,始終存有侵害用戶隱私權的疑慮。本案訴訟自2015年開始,及針對臉書「自動標記」的標籤建議功能爭論。美國於2018年經美國聯邦法院裁定,該功能在未經用戶同意的情況下蒐集並存儲相關使用者的生物特徵資料(biometric data),違反美國伊利諾州(Illinois)生物識別資料隱私法(Biometric Information Privacy Act)。雖然臉書已開始公開與用戶說明其可選擇關閉其識別功能,並針對上述聯邦法院判決提出上訴,卻仍於2019年8月敗訴。因此臉書同意以5.5億美元和解,用於支付伊利諾州的用戶(符合條件的)及訴訟相關費用。

日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。   新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。   新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

國際海事組織海事安全委員會決議於2025年前制定非強制性自駕船國際章程

  國際海事組織(International Maritime Organization,下稱IMO)於2022年4月20日至29日於線上召開為期9天的海事安全委員會(Maritime Safety Committee,下稱MSC)第105屆例會,會議重點係咸稱之自駕船——亦即海上自動化水面船舶(Maritime Autonomous Surface Ship,下稱MASS)之航行與操作規則。本屆會議總結並延續了MSC近年針對MASS的工作,包括2018年提出MASS實驗框架規範,以及2021年提出MASS法制框架評估等。本屆會議除了賡續規劃MASS的法制路線圖(Roadmap)外,鑒於船舶相關智慧科技快速發展,MSC決議於2025年之前,針對各級MASS制定非強制性(voluntary)之章程及規定後,蒐集各國的實務經驗與意見,再於2027年將其轉為強制性(mandatory)的規定,以於2028年生效並適用於IMO全體會員國。   部分會員國(例如日本)從造船技術出發,建議未來的MASS指南與規範內容應全面覆蓋船舶的設計、建造、系統、設備的功能要求。挪威則建議應按第103屆會議所盤點之法規,優先處理「人員」相關議題,包括船員、船長及遠端操作員的資格,以及當值與行為準則等。韓國則建議,即便是等級最高的全自駕船,亦不可能全面取代人為操作,因此MASS的法制應以「人機協同」為基礎,方能合乎SOLAS公約與IMO促進海上航行安全的目的及宗旨。最後,各國亦擬議將MASS規範優先適用於「貨船」,而非「客船」。本屆會議顯示IMO已加快MASS法制工作的進程並規劃具體之立法期程,我國除了在《無人載具科技創新實驗條例》建立的監理沙盒下已有兩件自駕船實驗案,未來勢必需要對接國際海事規範,航政機關實須提前因應及規劃。

TOP