何謂「循環經濟」?

  循環經濟(Circular Economy)不僅是資源回收或廢棄物利用,循環經濟強調的核心概念是創造資源利用的最大效益,有別於傳統經濟模式在資源利用上「開採、製造、使用、丟棄」的線性歷程,循環經濟加入了減少廢棄物產生、資源重覆與有效利用的概念,讓資源利用與產品的生成不再是有去無回的單向線性歷程。

  循環經濟的概念能夠套用到所有產品的生命歷程當中,自產品設計、生產、物流、銷售、使用、回收,到投入新的產品生命歷程,以環型的資源利用歷程,加入各種資源再利用的方式,並盡可能減少真正廢棄物的生成。與此相關聯的包含新興科技如大數據、物聯網之應用,到創新商業模式的生成,都可以是循環經濟的一部分。

  循環經濟所揭示的概念,是讓產業發展與環境保護能攜手同行,創造資源利用的最大效益。在歐盟「展望2020計畫」(Horizon 2020)當中,也同樣把循環經濟列為計畫的重要領域之一,循環經濟時代來臨所揭櫫的不僅僅是在資源回收、或是幾種廢棄物再利用的技術,而是對經濟體系當中資源運用歷程的重新形塑,與新興科技及商業模式創新均密不可分。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 何謂「循環經濟」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8165&no=57&tp=5 (最後瀏覽日:2025/09/17)
引註此篇文章
你可能還會想看
歐盟推出《網路韌性法案》補充歐盟網路安全框架

  歐盟為提升網路數位化產品之安全性,解決現有網路安全監管框架差距,歐盟執委會於2022年9月提出《網路韌性法案》(EU Cyber Resilience Act)草案,對網路供應鏈提供強制性網路安全標準,並課予數位化產品製造商在網絡安全方面之義務。該法案亦提出以下四個具體目標:   1.確保製造商對於提升產品之網路安全涵蓋整個生產週期;   2.為歐盟網路安全之合法性創建單一且明確之監管架構;   3.提高網路安全實踐之透明度,以及製造商與其產品之屬性;   4.為消費者和企業提供隨時可用之安全產品。   《網路韌性法案》要求製造商設計、開發和生產各種硬體、有形及軟體、無形之數位化產品時,須滿足法規要求之網路安全標準,始得於市場上銷售,並應提供清晰易懂之使用說明予消費者,使其充分知悉網路安全相關資訊,且至少應於五年內提供安全維護與軟體更新。   《網路韌性法案》將所涵蓋之數位化產品分為三種類別(產品示例可參考法案附件三):I類別、II類別,以及預設類別。I類別產品之網路安全風險級別低於II類別產品、高於預設類別,須遵守法規要求之安全標準或經由第三方評估;II類別為與網路安全漏洞具密切關連之高風險產品,須完成第三方合格評估始符合網路安全標準;預設類別則為無嚴重網路安全漏洞之產品,公司得透過自我評估進行之。法案另豁免已受其他法律明文規範之數位化產品,惟並未豁免歐洲數位身份錢包、電子健康記錄系統或具有高風險人工智慧系統產品。   若製造商未能遵守《網路韌性法案》之基本要求和義務,將面臨高達1500萬歐元或前一年度全球總營業額2.5%之行政罰鍰。各歐盟成員國亦得自行制定有效且合於比例之處罰規則。

建立G2B2C電子公文交換法制

再工業化!?美國推動先進製造知基礎法制政策研析

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP