循環經濟(Circular Economy)不僅是資源回收或廢棄物利用,循環經濟強調的核心概念是創造資源利用的最大效益,有別於傳統經濟模式在資源利用上「開採、製造、使用、丟棄」的線性歷程,循環經濟加入了減少廢棄物產生、資源重覆與有效利用的概念,讓資源利用與產品的生成不再是有去無回的單向線性歷程。
循環經濟的概念能夠套用到所有產品的生命歷程當中,自產品設計、生產、物流、銷售、使用、回收,到投入新的產品生命歷程,以環型的資源利用歷程,加入各種資源再利用的方式,並盡可能減少真正廢棄物的生成。與此相關聯的包含新興科技如大數據、物聯網之應用,到創新商業模式的生成,都可以是循環經濟的一部分。
循環經濟所揭示的概念,是讓產業發展與環境保護能攜手同行,創造資源利用的最大效益。在歐盟「展望2020計畫」(Horizon 2020)當中,也同樣把循環經濟列為計畫的重要領域之一,循環經濟時代來臨所揭櫫的不僅僅是在資源回收、或是幾種廢棄物再利用的技術,而是對經濟體系當中資源運用歷程的重新形塑,與新興科技及商業模式創新均密不可分。
本文為「經濟部產業技術司科技專案成果」
為強化並有效因應網路安全相關議題,美國總統歐巴馬日前於4月10日提出在2014財政年度(於2013年10月開始起算)增加強化網路安全經費之建議,期待透過藉由加強並建置相關網路安全機制的方式,有效解決目前美國所面臨來自中國、伊朗、俄國、以及其他國家之的網路安全威脅;同時,其亦希望藉此厚植並改善美國政府,以及私人企業的電腦網絡防禦能力。 本次由美國總統歐巴馬所提出的國家網路安全策略主要可區分為二部分:1. 加強美國網路事件(cyber incidents)的彈性度,以及2. 減少網路威脅事件。首先針對加強美國網路事件彈性度的部份,主要會透過a. 強化美國數位基礎建設,進而能有效抵禦滲透和干擾,b. 改善美國對於複雜和敏捷的網路威脅防禦能力,以及c. 培養針對不同類型的網路事件,皆能快速應變並恢復的能力,這三個方法來加以落實。而就減少網路威脅事件的部份,則計畫以透過a. 與美國友邦結盟的方式,共同研議國際網路規範,b. 強化網路犯罪的法律執行能力,和c. 遏止潛在對手就現有之美國網路漏洞採取不當行動,三個策略模式的實施來加以實踐。然而除了上述的兩個策略及其子項的具體落實外,美國政府亦強調串連各政府部門,以及私人企業團體間之合作重要性,以及建立一個能夠使得網路維護人員及其他相關人員,得以快速取得相關網路安全資訊的便捷管道亦為重要。 隨著全球資通訊網路交流互動以及依賴程度日益增長,如何有效兼顧個人網路安全隱私及使用自由,並同時確保網路資訊流通的安全性,乃為目前強加網路安全的重要關注焦點。本次美國總統歐巴馬所提出的網路安全推動策略走向,及其如何加以落實,實值得持續關注。
因應韓美自由貿易協定,韓國實施新修正之專利及商標制度韓國特許廳於2011年11月22日送交韓國國會批准之韓美自由貿易協定(Free Trade Agreement,簡稱FTA),於2012年3月15日正式生效。為因應韓美FTA的簽定,韓國專利及商標制度均須進行一定幅度的修正,例如專利權存續期間延長、聲音及氣味得註冊為商標等新制度。 首先,專利法修正重點如下: 專利權存續期間延長:指針對因審查過程緩慢,導致專利登記遲延者,遲延期間得視為專利權之存續期間。 專利申請優惠期延長:專利申請人將其發明公開發表在學術期刊時,將申請之優惠期從公開後6個月延長至12個月,亦即12個月內提出申請仍可取得專利。 廢止專利權撤銷制度:將發明專利在韓國國內一定期間(最少5年)不實施之撤銷專利權事由,予以廢止。 其次,商標法修正重點如下: 增訂新型態商標及證明標章制度:聲音、氣味得註冊為商標;新增證明標章之保護態樣,以證明「品質」、「原產地」、「生產方法」等特性。 廢止商標之專用使用權登記制度:修法前之韓國商標法第56條第1項第2款規定,商標專用使用權之設定、移轉(一般繼承之情形除外)、變更、消滅(權利混同之情形除外)或處分之限制等事項,非經登記,不生效力。 新增法定損害賠償制度:商標權人除可依照實際侵害情況請求損害賠償,商標法亦新增權利人得請求法定5千萬韓圜範圍內的損害賠償金額,且須經法院判決同意該損害賠償額度。 此外,針對專利法、新型專利法、設計保護法、商標法、不正競爭防止及營業秘密保護法等法規,也一併新增「保密命令制度」,亦即透過訴訟程序,對於營業秘密有被公開之虞之情形時,法院可對雙方當事人作出不得公開之保密命令。韓國期透過此次專利法及商標法等相關法規之修正,讓專利權人於權利行使期間得以獲得實質保障,同時亦擴大企業商標選擇之範圍。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
二氧化碳減量 環保署建議政策環評環保署近日表示,一九九八年所訂二氧化碳減量標準無法達成,建議參考經濟合作暨發展組織( OECD )模式,在二○二五年年平均成長率降為一%,對工業、能源和交通等有影響環境之虞的政策實施「政策環評」。但學者研究認為,及早因應比延後減量更有利。依據環保署所提出對溫室氣體減量根本問題,所牽涉的工業、能源和交通等重大政策進行政策環評,首當其衝包括蘇花高、中油八輕和台塑大煉鋼廠恐都將接受「檢驗」。 除鋼鐵排放持續逐年增加,國內前一百大公司的溫室氣體排放量佔工業部門排放量九成,住商和運輸部門執行情況也差。尤其推動汽燃費改隨油徵收一直未落實,交通政策以大量資金投注在新道路建設,吸引更大車流,應檢討整體運輸政策。 在策略上,應根據現有環境影響評估法第廿六條,訂定「政府政策環境影響評估作業辦法」,對國家溫室氣體減量最根本所在的工業、能源、交通政策,以及其他有影響環境之虞政策,都應實施「政策環評」,並應建立現有能源價格和徵收碳稅討論機制。