「專利適格」(Patent Subject Matter Eligibility)用淺白的文字解釋,就是成取得專利的基礎門檻、資格。專利適格的司法排除事項(Judicial Exception)為:「自然法則、自然現象、抽象概念」。而「兩階段標準」的導入,是給司法排除事項「敗部復活」的機會。
可取得專利適格的標的於35 U.S.C. §101有明文:「任何人發明或發現新穎而有用之程序(Process)、機器(Machine)、製品(Manufacture)或物之組合(Composition of Matter),或其新穎而有用之改良,皆得依據本法所定規定及要件就其取得專利權利。」但符合§101的敘述,不必然具專利適格。最高法院表示:「自然法則、自然現象、抽象概念是科學與科技成品的基礎,不可被獨佔。」然而,隨愈來愈多的發明與發現推出、電腦文明的發展,司法排除事項亦受挑戰,在 Mayo v. Prometheus,最高法院首次針對自然法則和自然現象提出「兩階段標準」。基此,美國專利與商標局(USPTO)2012年發表專利審查綱要。後續,Alice v. CLS Bank中,引「兩階段標準」將兩階段標準應用在「電腦應用過程、電腦系統、減免交割風險的電腦可讀媒介」的抽象概念。USPTO也將「兩階段標準」編入專利審查手冊(Manual of Patent Examining Procedure)。
USPTO專利審查手冊公布的「兩階段標準」:
第1步:四種可取得專利適格的標的(35 U.S.C. §101)
程序、機器、製品、物之組合。
第2A步:司法排除事項
假設不是「自然法則、自然現象、抽象概念」三種司法排除事項,則具專利適格;若是司法排除事項,則進入第2B步。
第2B步:是否「更具意義」(Significantly More)?
這一個步驟是「敗部復活」。如果該發明存在「發明概念」(Inventive Concept),則符合「更具意義」,可取得專利適格;反之,則無專利適格。
本文為「經濟部產業技術司科技專案成果」
法國憲法委員會於今(2020)年6月18日宣告今年5月甫通過之《打擊網路仇恨言論法》(Lutte contre la haine sur internet, Fighting Hate on the Internet,又稱Avia Law)違憲,認該法侵害人民言論自由之權利。 為打擊網路上日益嚴重之仇恨性言論,法國國民議會於今年5月13日通過《打擊網路仇恨言論法》,該法旨在課予網路社交平台之責任,在其使用者提出檢舉後,平台應於24小時期限內移除明顯的不法言論,包含歧視、仇恨、暴力、煽動犯罪、涉及恐怖主義或兒童色情等,尤以,若該訊息涉及兒童色情或煽動恐怖主義者,則平台刪除該訊息之期限將縮短為1小時內。倘平台若未於期限內刪除之,面臨之罰緩最高達125萬歐元;如經法國高等視聽委員會(Conseil superieur de l'audiovisuel, CSA)審核,發現該平台之內容審查系統存在嚴重且反覆之缺陷者,則最高可對該平台處以其全球收入4%之罰鍰。 該法原定於今年7月1日施行,但經法國憲法委員會審查後,認該法如前述之多項條款要求私人企業判斷使用者之言論是否為明顯涉及非法,將鞏固私人審查權,高額罰款恐將促進平台積極刪除平台上之言論,違反憲法保障之言論自由,因而宣告該條款違憲無效。目前尚不確定法國政府是否會如期施行其餘條款,惟由該法即可看出,法國傾向授權CSA於對網路平台採取更嚴格監管之態度,然是否能有效抑制仇恨性言論,後續尚值得密切觀察。
「自動駕駛車(self-driving car)」可否合法上路?「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。 目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。 而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
中國大陸財政部及科技部印發《國家重點研發計畫資金管理辦法》於2016年12月30日,中國大陸財政部及科技部為規範國家重點研發計畫管理,切實提高資金使用效益聯合發佈了《國家重點研發計畫資金管理辦法》。 該計畫以支援解決重大科技問題為目標,以“優化資源配置、完善管理機制、提高資金效益”為重點,辦法全文共8章57條,根據國家重點研發計畫特點,從預算編制到執行、結題驗收到監督檢查,針對全過程提出了資金管理的要求,明確《辦法》制定的目的和依據、重點研發計畫資金支援方向、管理使用原則和適用範圍,就重點專項概預算管理、專案資金開支範圍、預算編制與審批、預算執行與調劑、財務驗收、監督檢查等具體內容和流程、職責做了明確規定。 與原科技計畫資金管理辦法相比,《辦法》主要有以下變化: 1.建立了適應重點研發計畫管理特點的概預算管理模式。 2.遵循科研活動規律,落實“放、管、服”改革。適應科研活動的不確定性的特點,《辦法》堅持簡政放權,簡化預算編制,下放預算調劑許可權。 3.突出以人為本,注重調動廣大科研人員積極性。 為推動辦法有效落實,財政部及科技部並要求相關部門、專案承擔單位需要共同做好以下工作: 1.相關主管部門應當督促所屬承擔單位加強內控制度和監督制約機制建設、落實重點專項項目資金管理責任。 2.財政部、科技部將組織開展宣傳培訓,指導各有關部門和單位開展學習,全面提高對《辦法》的認識和理解,為政策執行到位提供保障。 3.科技部、財政部將通過專項檢查、專項審計、年度報告分析、舉報核查、績效評價等方式,對專業機構、專案承擔單位貫徹落實《辦法》情況進行監督檢查或抽查。