「專利適格」(Patent Subject Matter Eligibility)用淺白的文字解釋,就是成取得專利的基礎門檻、資格。專利適格的司法排除事項(Judicial Exception)為:「自然法則、自然現象、抽象概念」。而「兩階段標準」的導入,是給司法排除事項「敗部復活」的機會。
可取得專利適格的標的於35 U.S.C. §101有明文:「任何人發明或發現新穎而有用之程序(Process)、機器(Machine)、製品(Manufacture)或物之組合(Composition of Matter),或其新穎而有用之改良,皆得依據本法所定規定及要件就其取得專利權利。」但符合§101的敘述,不必然具專利適格。最高法院表示:「自然法則、自然現象、抽象概念是科學與科技成品的基礎,不可被獨佔。」然而,隨愈來愈多的發明與發現推出、電腦文明的發展,司法排除事項亦受挑戰,在 Mayo v. Prometheus,最高法院首次針對自然法則和自然現象提出「兩階段標準」。基此,美國專利與商標局(USPTO)2012年發表專利審查綱要。後續,Alice v. CLS Bank中,引「兩階段標準」將兩階段標準應用在「電腦應用過程、電腦系統、減免交割風險的電腦可讀媒介」的抽象概念。USPTO也將「兩階段標準」編入專利審查手冊(Manual of Patent Examining Procedure)。
USPTO專利審查手冊公布的「兩階段標準」:
第1步:四種可取得專利適格的標的(35 U.S.C. §101)
程序、機器、製品、物之組合。
第2A步:司法排除事項
假設不是「自然法則、自然現象、抽象概念」三種司法排除事項,則具專利適格;若是司法排除事項,則進入第2B步。
第2B步:是否「更具意義」(Significantly More)?
這一個步驟是「敗部復活」。如果該發明存在「發明概念」(Inventive Concept),則符合「更具意義」,可取得專利適格;反之,則無專利適格。
本文為「經濟部產業技術司科技專案成果」
新加坡金融管理局(Monetary Authority of Singapore,下文簡稱MAS)於2024年5月29日發布《資料治理與管理實務》(Data Governance and Management Practices: Observations and Supervisory Expectations From Thematic Inspections)文件。此文件係根據MAS於2022年至2023年期間針對國內系統性重要銀行(Domestic Systemically Important Banks,下文簡稱D-SIBs)進行「資料治理與管理架構」的主題式檢查結果加以研究與分析而作成,其內容包含MAS對於資料治理的期望、受檢銀行的優良實踐範例及缺失,希望未參與檢查的銀行與金融機構也能根據這份文件進行適當的改善措施。 MAS在《資料治理與管理實務》文件中提出關於五大主題的監管期待,簡要說明如下: 1.董事會和高階管理層的監督: 董事會和高階管理層應加強監督資料治理。例如,定期向董事會報告資料管理領域的重要問題;高階管理層應即時獲得準確且完整的相關資訊,並對資料風險進行分析。 2.設置資料管理單位: 銀行應建立資料管理單位,並為資料管理辦公室提供明確的任務授權,以利其監測資料的品質。 3.資料品質之管理與控制: 銀行應建立資料品質管理架構與流程,以確保資料在整個生命週期中是有品質的。例如,建立有效控制資料流的機制;建立資料品質指標或計分卡;使用終端使用者運算工具(end-user computing tools)處理資料時,應納入風險評估和控制架構來管理。 4.資料品質控制資料之問題識別與升級: 銀行應制定升級標準和行動計畫,以改善資料品質。另外MAS也建議銀行應該要有強大且完整的資料譜系(data lineage)來辨識資料問題並將之改善。 5.BCBS 239原則之擴大適用:BCBS 239原則係巴賽爾銀行監理委員會(the Basel Committee on Banking Supervision)第239號規範:《有效風險資料聚合及風險報告原則》(Principles for effective risk data aggregation and risk reporting),適用於全球的系統性重要銀行(Global Systemically Important Banks),巴賽爾銀行監理委員會同時建議D-SIBs宜遵循此原則,因此MAS亦要求新加坡境內7家D-SIBs須遵守BCBS 239原則的相關規範。此外,MAS仍期待各銀行與金融機構可以擴大BCBS 239原則的適用範圍,例如在範圍內報告(in-scope reports,或稱主要風險報告)中納入反洗錢、稅務管理等面向。由於金融服務是一個由資料驅動的產業,資料已然是金融業重要的戰略資產。MAS期盼這份文件能夠讓所有銀行及金融機構提升其資料治理能力,並針對內部的問題進行改善。
智慧電表的陷阱美國及歐洲都開始引進附加通訊功能的電表(所謂智慧電表)。這一波動向也真正開始影響到日本。日本國內最大家的東京電力公司將於2010年10月開始進行智慧電表的實際驗證研究。 雖然至今只有關西電力公司與九州電力公司有引進智慧電表,但在10年之後,日本大半以上的電表會是智慧電表。 從短期來看,智慧電表就只具有使用電力的遠距抄表跟遠距截斷的功能。但是就只具有這樣的功能是不足以讓眾多目光聚焦的,它所具有的是期待在未來透過電表跟家電機器等所形成的資訊通信網絡。在目前許多企業打算就先透過網路蒐集使用電力的資訊,之後在提供新的附加服務。 這樣的動向不只是發生在電力公司,在瓦斯及自來水業界也正在發生。例如東京瓦斯公司將於2010年度起,開始實驗運作具有無限通訊功能的瓦斯表,快的話在2012年就會正式更換約1000萬台的瓦斯表。東京瓦斯公司還計畫在之後將用於瓦斯表上的通訊系統擴張到自來水表的抄表上。美國企業如IBM公司也積極投入自來水表的「智慧化」。 但是,在實際引進智慧電表時,美國發生了引進智慧電表的住戶的電費急速增加,產生了不少的訴訟,美國德州Oncor電力公司正面對這樣的訴訟,加州的PG&E公司的顧客也正聲請相關的訴訟。 專家們指出一些會影響電費增加的原因,其中就指出因為引進智慧電表使得「正確測量出電力使用量」這也是因為美國至今所使用的電表太過老舊,無法正確的測量出正確的電力使用量,以致用戶都在付出比實際使用量要少的電費。所以在引進智慧電表測量出正確的電力使用量之後,就產生出「電費增加」的錯覺。 現在美國的電力公司主要把智慧電表用於自動抄表上,這只是利用智慧電表的第一步。若在初始階段無法得到消費者的支持,之後要推廣則會更為困難。使用電力的相關資訊在某種意義上可視為是個人資料的其中一種。隱私權的問題等與消費者保護汲汲相關的議題陸續都會出現。 美國眾議員Edward Markey在眾議院提出了電力公司要將智慧電表所測量的電力使用資訊即時提供給消費者,並有保護該資訊隱私權義務化的法案。在技術面上,有關重視資訊安全的通訊型式的討論亦蓬勃發展起來。
我國電子公文法制的最新發展 英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。