事前承認制為日本基於科研成果廣泛運用之目的,透過產業技術力強化法第19條的增修正式引入拜杜法制度後,針對政府資助研發成果移轉或授權予計畫外第三人的情形賦予委託機關與執行單位的義務。在日本拜杜法制度下,政府資助研發成果的相關專利權原則上得歸屬於執行單位,但考量到這些研發成果若移轉給未預備活用該些成果之人,將會造成由國家資金所衍生的科研成果難以被運用,從而無法達成促進成果運用的法目的,因此在該法第19條第4項增訂事前承認制。
依該制度,執行單位若欲讓與歸屬於執行單位之政府資助研發成果所涉及專利權給第三人,或將使用該些專利權的權利設定或移轉予第三人時,除了符合政令所定不妨礙專利權運用之情形外,委託機關須和執行單位約定為上開移轉等行為前,須先取得委託機關的同意。
本文為「經濟部產業技術司科技專案成果」
2024年3月6日,南韓個資保護委員會(Personal Information Protection Commission, PIPC)宣布通過個人資料保護法施行法(Enforcement Decree of the Personal Information Protection Act, PIPA Enforcement Decree)修正案,並於2024年3月15日正式實行。 本次修法重點如下: 1.明訂個資主體可要求公開自動化決策過程之權利及應對不利結果時可採取之措施 針對使用AI等自動化系統處理個資並做出的自動化決策,個資主體(即,個人)有權要求解釋決策過程並進行審查,尤其當決策結果對個資主體權益有重大影響時(例如:不通過其社福補助申請),個資主體可拒絕自動化決策結果,並要求改為人為決策及告知重新決策結果。另為確保透明、公平,自動化決策依據的標準與程序亦須公開,並於必要時向公眾說明決策過程。 2.確立隱私長(Chief Privacy Officers, CPOs)的資格要求及適用範圍 為確保CPO能順利開展個資保護工作,要求處理大量或敏感個資機關之CPO至少具有4年個資、資安相關經驗,且個資經驗至少2年。適用機關包括:年營業額達1,500億韓元以上、處理超過100萬人個資或超過5萬人特種資料者;學生超過2萬人的大學;處理大量特種個資的教學醫院或大型私人醫院等;疾管局、社福、交通、環保等公共系統運營機構。 3.明訂評估公共機構個資保護效能之標準及程序 依據個資法第11-2條規定,PIPC每年需對公共機構(如:中央行政機關及其所屬機關、地方政府及總統令規定者)進行個資保護程度評估,而為使評估作業有所依循,本次新增評估標準及相關程序包括:政策和業務表現及其改進情形、管理體系適當性、保護個資措施及執行情形、防範個資侵害及確保安全性措施及執行情形等。 4.調整需要承擔損害賠償責任的適用範圍及門檻 為確保機關履行個資主體損害賠償責任,將需履行投保保險等義務之適用範圍由網路業者擴大至實體店面及公共機構等。同時,調整適用門檻,將年銷售額由5千萬韓元調整為10億韓元、個資主體數由1千人調整為1萬人,以減輕小型企業負擔。另亦明訂可豁免責任的對象包括:不符合CPO資格的公共機構,公益法人或非營利組織,及已委託給已投保保險之專業機構的小型企業。 PIPC另將公布一份指引草案,內容包括自動決策權利、CPO資格要求、公共機構個資保護評估標準、賠償責任保障制度等,並舉行說明會來收集回饋意見。
德國隱私保護機構指稱Facebook實名制違法Facebook之實名制政策禁止用戶使用假名,此一行為已遭德國隱私保護機構禁止。德國Schleswig-Holstein邦的資料保護中心組織(Office of the Data Protection Commissioner,簡稱ULD)控訴臉書「實名制」已違反德國電信媒體法(Telemediengesetz)。依據德國「電信媒體法」規定,只要匿名的使用具有技術上之合理性及可行性時,服務供應商必須允許用戶採用假名,惟Facebook的實名制政策卻禁止用戶使用假名。資料保護中心表示,Facebook要求用戶註冊時須填入真實姓名,違反德國電信媒體法第13條第6項。ULD表示,為確保網路用戶權利及遵守網路保護法,臉書應立即終止實名制的執行。Facebook發言人則對ULD指控不以為然,主張「服務供應商有權在現行法律下自行決定所採取之匿名政策」,並表示Facebook採取實名制係為保護社群安全,若發現用戶使用假名將刪除帳號。Facebook發言人認為「這只是在浪費德國納稅人的金錢!此法律之指控毫無意義,同時我們也將據理力爭。」Facebook認為,實名制是該網站經營之重要機制,除了能與其他社群網站做出明顯的市場區隔外,更能積極保護用戶的個人資料。
世界智慧財產權組織(WIPO)發布《2021年全球創新指數報告》世界智慧財產權組織(WIPO)於2021年9月20日發布了第14版的《全球創新指數報告》(Global Innovation Index, GII),本報告以81項指標對全球132個經濟體的創新生態系進行評鑑,前十名分別為瑞士、瑞典、美國、英國、韓國、荷蘭、芬蘭、新加坡、丹麥、德國,亞洲表現最好的是韓國。 本報告指出,在COVID-19疫情期間,世界各國政府和企業對創新的投資並未減少,且健康相關產業、綠色相關產業、數位科技相關產業最受到矚目。 此外,今年的報告中新增了一個專章「全球創新追蹤」(global innovation tracker),其中針對科學與創新投資(science and innovation investments)這一組指標進一步的分析發現,2020年全球在科學出版數量增加了7.6%、在研發支出增加了8.5%、在創業投資增加了5.8%、在國際專利申請數量增加了3.5%。與2019年相比,國際專利申請數量以中國大陸增加16%最多,美國、韓國的申請數量也都穩定成長,但日本與多數歐洲國家的申請數量皆屬下降;而專利申請的技術領域以醫療技術、製藥技術、生物技術為主。整體而言,雖然疫情為全球經濟帶來嚴峻挑戰,但各國對於科學與創新的投資經費仍持續增加。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。