美國聯邦第七巡迴上訴法院宣告電業以設置智慧電表手段蒐集用電戶即時用電資訊合法

  美國聯邦第七巡迴上訴法院於2018年08月16日宣告,美國伊利諾伊州杜佩奇縣內珀維爾市(Naperville)所經營之「獨占性」公用售電業,以裝設智慧電表手段蒐集用電戶即時(Real Time)用電資料,並保存長達三年之行為,並無違反美國憲法第四條修正案以及伊利諾州憲法第一條第六項所宣示之不得以不合理手段對於民眾居住隱私資料進行搜索之限制。

  美國聯邦第七巡迴上訴法院闡明,本案爭點有二:第一,內珀維爾市(Naperville)所經營之獨占性公用售電業以裝設智慧電表手段蒐集用電戶即時用電資料,並保存長達三年之行為,是否構成美國憲法第四條修正案以及伊利諾州憲法第一條第六項所謂之「對於民眾居住隱私資料之搜索」?第二,如內珀維爾市(Naperville)所經營之獨占性公用售電業以裝設智慧電表手段蒐集用電戶即時用電資料係構成「對於民眾居住隱私資料之搜索」,則內珀維爾市(Naperville)所經營之獨占性公用售電業是否有更高之公益,可合理化此一對於「對於民眾居住隱私資料之搜索」之行為?

  美國聯邦第七巡迴上訴法院認定內珀維爾市電業以智慧電表手段蒐集民眾用電資訊,確實是構成美國憲法第四條修正案以及伊利諾州憲法第一條第六項所謂之「對於民眾居住隱私資料之搜索」。但是由於珀維爾市電業蒐集這些用電資訊,是基於更高之公益目的,因此仍屬以合理手段對於民眾居住隱私資料進行搜索。因此判決本案珀維爾市電業勝訴。

  於第一爭點,美國聯邦第七巡迴上訴法院認定智慧電表之紀錄內容包含「電器負載特徵(load signature)」以及「用電戶電力消耗慣性」,對比Kyllo v. United States, 533 U.S. 27, 31-32(2001)乙案下警方以熱感應器方式偵測住宅整體熱能有無之行為,更高度細緻化、具有侵入性,且智慧電表之設置,於現今尚非普及(not in general public use),因此構成對於民眾居住隱私資料之搜索。又內珀維爾市(Naperville)所經營之獨占性公用售電業雖辯稱用電戶於裝設智慧電表時,皆已經同意電業蒐集其個人用電資訊,然美國聯邦第七巡迴上訴法院認定,內珀維爾市(Naperville)所經營之公用售電業具有高度獨占性,故用電戶裝設智慧電表之同意難謂有效,且用電戶同意用電,不代表用電戶即同意分享其用電資訊。

  惟於第二爭點,美國聯邦第七巡迴上訴法院認定,由於內珀維爾市(Naperville)所經營之獨占性公用售電業已經聲明不會將此類用電資訊分享予有關政府機關,且本案對於用電戶用電資訊之蒐集,其目的亦與刑事追訴無關,是以應以低密度審查標準看待本案即可,又本案內珀維爾市(Naperville)所經營之獨占性公用售電業裝設智慧電表之目的在於促使電網現代化,並且可使發電業供應更加穩定之電力,並且也可以透過時間電價(Time-Based Pricing)之方式促使用電戶節電,並且減少電網負載,同時也可以使發電業節省查表之人事成本,因此雖然內珀維爾市(Naperville)所經營之公用售電業透過裝設智慧電表之手段蒐集用電戶即時用電資訊係構成對於用電戶之民眾居住隱私資料之搜索,然由於其具有更高之公益性,因此仍可合理化此一對於「對於民眾居住隱私資料之搜索」之行為。

  綜上,本案美國聯邦第七巡迴上訴法院判定內珀維爾市(Naperville)所經營之獨占性公用售電業勝訴。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國聯邦第七巡迴上訴法院宣告電業以設置智慧電表手段蒐集用電戶即時用電資訊合法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8179&no=57&tp=1 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢

日本經濟產業省於2024年8月23日發布《IoT產品資安符合性評鑑制度建構方針》(IoT製品に対するセキュリティ適合性評価制度構築方針),以順應國際IoT產品資安政策趨勢,因應日益嚴重的資安威脅。 本制度為自願性認證制度,由情報處理推進機構(情報処理推進機構,簡稱IPA)擔任認證機構進行監督。以IoT產品為適用對象,制定共通因應資安威脅之最低標準,再依不同產品特性需求,制定不同符合性評鑑等級,依評鑑結果進行認證,授予認證標章。不同評鑑等級差異如下: 1.等級一:為共通因應資安威脅之最低標準,可由供應商進行自我評鑑,並以評鑑結果檢查清單申請認證標章,IPA僅會針對檢查清單進行形式確認。 2.等級二:係考量產品特性後,以等級一為基礎,制定應加強之標準,與等級一相同係由供應商評鑑,自我聲明符合標準,IPA僅會針對檢查清單進行形式確認。 3.等級三:係以政府機關或關鍵基礎設施業者為主要適用對象,須經過獨立第三方機構評鑑,並以IPA為認證機構進行認證,確保產品值得信賴。 本制度可協助採購者及使用者依資安需求,選用合適的IoT產品,亦有助於日本與國際IoT產品資安符合性評鑑制度進行協作,達成相互承認,減輕IoT產品供應商輸出海外之負擔。

美國專利商標局結束專利申請審查後試行程序

  美國專利商標局(United States Patent and Trademark Office, USPTO)於2017年1月12日宣布其不再依其審查後試行程序(Post-Prosecution Pilot Program, P3 Program)受理新的案件。該程序係用以使發明人在專利申請程序受到駁回以後得提出更多回饋意見,以期減少上訴至專利審判暨上訴委員會(Patent Trial and Appeal Board, PTAB)之數量。   該程序係在2016年7月11日公布施行,在該程序中,申請人在最終駁回做成後兩個月內得請求召開聽證;申請人得對審查員進行20分鐘內之口頭簡報。簡報進行完畢以後,申請人即被排除於會議之外,審查委員之裁決將會以書面之形式通知申請人。   在P3程序創設以前,專利申請被駁回的發明人得採取上訴前先期審查會議試行計畫(Pre-Appeal Brief Conference Pilot Program)或是最終審議後試行程序2.0(After Final Consideration Pilot 2.0, AFCP2.0)的方式提出明顯錯誤的爭執或是申請內容的修改,但這兩種申訴方式並無法讓申請人取得直接向專利審查員進行簡報的機會。   在2016年7月11日公布本項試行程序時,USPTO即宣布本項計畫試行時間直到2017年1月12日,或是USPTO受理1600位合格申請為止,在本計畫按照預定時程結束後,USPTO表示將會依公眾回饋意見以及試行程序的結果來決定未來是否會施行類似於本計畫之措施。

資通安全法律案例宣導彙編 第2輯

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP