美國聯邦第七巡迴上訴法院於2018年08月16日宣告,美國伊利諾伊州杜佩奇縣內珀維爾市(Naperville)所經營之「獨占性」公用售電業,以裝設智慧電表手段蒐集用電戶即時(Real Time)用電資料,並保存長達三年之行為,並無違反美國憲法第四條修正案以及伊利諾州憲法第一條第六項所宣示之不得以不合理手段對於民眾居住隱私資料進行搜索之限制。
美國聯邦第七巡迴上訴法院闡明,本案爭點有二:第一,內珀維爾市(Naperville)所經營之獨占性公用售電業以裝設智慧電表手段蒐集用電戶即時用電資料,並保存長達三年之行為,是否構成美國憲法第四條修正案以及伊利諾州憲法第一條第六項所謂之「對於民眾居住隱私資料之搜索」?第二,如內珀維爾市(Naperville)所經營之獨占性公用售電業以裝設智慧電表手段蒐集用電戶即時用電資料係構成「對於民眾居住隱私資料之搜索」,則內珀維爾市(Naperville)所經營之獨占性公用售電業是否有更高之公益,可合理化此一對於「對於民眾居住隱私資料之搜索」之行為?
美國聯邦第七巡迴上訴法院認定內珀維爾市電業以智慧電表手段蒐集民眾用電資訊,確實是構成美國憲法第四條修正案以及伊利諾州憲法第一條第六項所謂之「對於民眾居住隱私資料之搜索」。但是由於珀維爾市電業蒐集這些用電資訊,是基於更高之公益目的,因此仍屬以合理手段對於民眾居住隱私資料進行搜索。因此判決本案珀維爾市電業勝訴。
於第一爭點,美國聯邦第七巡迴上訴法院認定智慧電表之紀錄內容包含「電器負載特徵(load signature)」以及「用電戶電力消耗慣性」,對比Kyllo v. United States, 533 U.S. 27, 31-32(2001)乙案下警方以熱感應器方式偵測住宅整體熱能有無之行為,更高度細緻化、具有侵入性,且智慧電表之設置,於現今尚非普及(not in general public use),因此構成對於民眾居住隱私資料之搜索。又內珀維爾市(Naperville)所經營之獨占性公用售電業雖辯稱用電戶於裝設智慧電表時,皆已經同意電業蒐集其個人用電資訊,然美國聯邦第七巡迴上訴法院認定,內珀維爾市(Naperville)所經營之公用售電業具有高度獨占性,故用電戶裝設智慧電表之同意難謂有效,且用電戶同意用電,不代表用電戶即同意分享其用電資訊。
惟於第二爭點,美國聯邦第七巡迴上訴法院認定,由於內珀維爾市(Naperville)所經營之獨占性公用售電業已經聲明不會將此類用電資訊分享予有關政府機關,且本案對於用電戶用電資訊之蒐集,其目的亦與刑事追訴無關,是以應以低密度審查標準看待本案即可,又本案內珀維爾市(Naperville)所經營之獨占性公用售電業裝設智慧電表之目的在於促使電網現代化,並且可使發電業供應更加穩定之電力,並且也可以透過時間電價(Time-Based Pricing)之方式促使用電戶節電,並且減少電網負載,同時也可以使發電業節省查表之人事成本,因此雖然內珀維爾市(Naperville)所經營之公用售電業透過裝設智慧電表之手段蒐集用電戶即時用電資訊係構成對於用電戶之民眾居住隱私資料之搜索,然由於其具有更高之公益性,因此仍可合理化此一對於「對於民眾居住隱私資料之搜索」之行為。
綜上,本案美國聯邦第七巡迴上訴法院判定內珀維爾市(Naperville)所經營之獨占性公用售電業勝訴。
本文為「經濟部產業技術司科技專案成果」
英國資訊專員辦公室(Information Commissioner's Office,下稱ICO)於2025年8月18日讉責南約克郡警方(South Yorkshire Police,下稱SYP)刪除超過9萬6千筆穿戴式攝影機影片(body-worn video,下稱BWV)證據,強調SYP未落實資料識別、第三方監督及備份機制等資料管理措施。 警方使用BWV作為記錄警方執法過程之取證方式,目的為提高透明度、公眾信賴及取得最佳證據等。由於BWV證據具備公正性及準確性,亦可減低對於受害者證據之依賴。當警員換班時,需要將BWV證據下載至指定地點,先傳送至「數位證據管理系統(Digital Evidence Management,下稱DEM系統,該系統由第三方業者管理)」後,再傳輸至「儲存網格(Storage Grid)資料庫」。倘若發生爭議,SYP將檢視「儲存網格資料庫」中的BWV證據。 2023年SYP發生遺失大量BWV證據之爭議事件,事實整理如下: 2023年5月升級DEM系統後,SYP改將資料儲存於本地硬碟。同年8月7日時,SYP發現在儲存網格資料庫中,具錯誤刪除96,174筆原始BWV證據之紀錄,經調查發現,在同年7月26日,第三方將本地資料傳輸到儲存網格時,曾發生大規模的資料刪除事件。 由於在進行備份時,未使用特定的檔案名稱或其他可識別的資料標記等方式標記資料,即使SYP內部已針對95,033筆BWV證據進行備份,仍無法比對確認「已被永久刪除的BWV證據」數量,且遺失之資料共涉及126起刑案,其中更有3案受影響,甚至有1起案件指出,若BWV證據存在,則相關案件的檢調程序應能夠有所進展。 ICO亦指出SYP雖與第三方簽署契約,卻未明定處理程序,且未監督第三方的遠端存取行為。SYP早在2019年,已發現備份機制存在問題,但當時未向高階管理人員報告相關問題的完整狀況,導致未採取補救措施。 綜上述,ICO提出SYP應確保所有紀錄應以清晰、可識別的方式進行標記;在允許第三方存取系統前,應完成風險評估及確認管控要求,並持續監督第三方等改善建議;以及應建立能夠有效還原任何遺失BWV證據的備份方案。 另外依英國皇家檢察署(Crown Prosecution Service)的統計顯示,因缺乏定罪的必要證據,包含缺乏數位證據,如受害者詢問或隨身攝影機影片遺失等各類原因,導致無法進行審判的皇家檢察署案件,整體呈現上升趨勢,從2020年的7484起案件,上升到2024年的8180起案件。 為系統性建立及強化數位證據管理機制,我國司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局共同推動之「司法聯盟鏈共同驗證平台」,其以「b-JADE證明標章」檢視既有的數位證據監管制度,其他司法機關亦可參照「b-JADE證明標章」以確保採取有效之資料識別、第三方監督及備份控管作法,除了控管數位證據的相關業務流程、內外部人員等,亦應促使內部滾動式檢視問題及須定期向主管回報,以利調整規劃。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。 日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。 新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。 在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。 將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。 再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。 再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。 從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。 依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。
搜尋引擎業者刪除特定檢索結果之判斷基準-日本最高法院平成28年(許)第45號(平成29年1月31日裁定) 美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。