2018年7月27日印度電子及資訊科技部(Ministry of Electronics and Information Technology, MeitY)公告個人資料保護法草案(Protection of Personal Data Bill),若施行將成為印度首部個人資料保護專法。
其立法背景主要可追溯2017年8月24日印度最高法院之判決,由於印度政府立法規範名為Aadhaar之全國性身分辨識系統,能夠依法強制蒐集國民之指紋及虹膜等生物辨識,國民在進行退稅、社會補助、使用福利措施等行為時都必須提供其個人生物辨識資料,因此遭到人權團體控訴侵害隱私權。最高法院最後以隱私權為印度憲法第21條「個人享有決定生活與自由權利」之保護內涵,進而認為國民有資料自主權,能決定個人資料應如何被蒐集、處理與利用而不被他人任意侵害,因此認定Aadhaar專法與相關法律違憲,政府應有義務提出個人資料專法以保護國民之個人資料。此判決結果迫使印度政府成立由前最高法院BN Srikrishna法官所領導之專家委員會,研擬個人資料保護法草案。
草案全文共112條,分為15章節。主要重點架構說明如下:
[1]對於敏感個人資料之定義,草案第3-35條規定,包含財務資料、密碼、身分證號碼、性生活、性取向、生物辨識資料、遺傳資料、跨性別身分(transgender status)、雙性人身分(intersex status)、種族、宗教或政治信仰,以及與資料主體者現在、過去或未來相連結之身體或精神健康狀態的健康資料(health data)。
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
美國聯邦航空總署准許美國有線電視新聞網在人群中使用小型無人機進行拍攝美國有線電視新聞網(Cable News Network, CNN)通過美國聯邦航空總署(Federal Aviation Administration, FAA)之審查,允許使用小型無人機(small Unmanned Aerial Vehicle, sUAS)直接穿越人群中(flying directly over a person or people)進行拍攝採訪,為美國目前第一件允許在商業目的中使用小型無人機自由穿梭人群之豁免核准案。 美國於2016年8月通過聯邦法規第107篇(14 CFR Part 107)又稱小型無人機規則(small UAS rule),規定關於小型無人機之操作規範。其中該規則列舉7種操作禁止事項,須事前經由美國聯邦航空總署豁免方得進行操作(又稱Part 107 Waiver),分別為:1.夜間飛行、2.直接穿越人群飛行、3.經由行進車輛或飛機進行飛行、4.一人操作多架無人機、5.視距外飛行、6.飛行超過400英呎、7.飛行區域近機場或禁航區附近。 CNN本次豁免項目即第107.39條的「直接穿越人群飛行」之規定,該規定除飛越對象為操作者本身,或僅飛越在建築物、車輛上並不受禁止規範外,只要無人機穿越人群皆須經美國聯邦航空總署審查同意方得操作,否則將面臨重罰。此一豁免通過後,改變以往記者與攝影師合作之拍攝手法,改由受訪者直接接受無人機採訪,除節省人力資源外也能突破地勢之空間限制,對於商業營運模式將有重大變革。 然而由於直接穿越人群飛行之風險性極高,因此在本次豁免條件中亦有嚴格限制,除只能使用申請時之特定無人機外,並應該嚴格遵守製造商之使用說明。另外,不得擅自改變無人機之設計或在未經允許下額外加裝配備。同時飛行高度亦不得高於海平面150英呎,並須定期檢測維修。最後每次操作皆須詳細記錄並保存,包含機械故障時須立即回報。
英國成立英國衛生與社會照護資訊中心整合政府醫療資訊隨著英國國家健康服務(National Health Service, NHS)的改革,衛生和社會照護法(The Health and Social Care Act 2012)第九部分第二章,規範成立英國衛生與社會照護資訊中心(The Health and Social Care Information Centre, HSCIC)作為政府醫療資訊公開、整合與管理單位,此項規定於今(2013)年4月1日生效。 HSCIC並非正式的政府部會,而屬於執行行政法人(Executive Non Departmental Public Bodies),向衛生部長(Secretary of State for Health)負責,其職責除了蒐集、分析和傳播國家資料暨統計資訊以外,同時亦進行國家各層級的醫療資訊基礎設施的整合,作為醫療資訊數據公開的門戶;此外,HSCIC利用其行政法人的特性,將醫療組織視為客戶,提供不同的服務和產品,以協助其達到所需的資訊管理需求。透過HSCIS對於資訊的整合再公開,有助於在增進政府資訊透明性的同時,亦保障了資訊流動的效率和安全性。 其中HSCIC對於敏感性資料之應用,特別設立資料近用諮詢小組(Data Access Advisory Group, DAAG)予以處理。資料諮詢小組是每月定期由HSCIC所主持的獨立運作團體,須向HSCIC委員會負責。當HSCIC面臨敏感性資料或可識別個人資料之應用(包括是為了研究目的,和為了促進病人的醫療照護所需之應用)時,即交由資料近用諮詢小組會議來討論,以確保揭露該項資訊的風險降到最低。 從HSCIC的組織任務能輕易地發現其具有強大整合醫療資訊之功能,其未來發展勢必與過往飽受爭議的醫療資訊應用息息相關,因此相當值得我們持續觀察HSCIC的後續動態。