美國加州「對話機器人揭露法案」

  美國加州議會於2018年9月28日通過加州參議院之對話機器人揭露法案(Bots Disclosure Act, Senate Bill No. 1001)。此一法案於美國加州商業及專門職業法規(Business and Professions Code)第七部(Division)第三篇(Part)下增訂了第六章(Part)「機器人」乙章,擬防範「利用對話機器人誤導消費者其為真人同時並誤導消費者進行不公平交易」之商業模式,本法案將於2019年7月1日正式生效。依此法案,企業如有使用對話機器人,則應揭露此一事實,讓消費者知悉自己是在與對話機器人溝通。

  美國加州對話機器人揭露法案對於「機器人」之定義為全自動化之線上帳戶,其所包含之貼文、活動實質上並非人類所形成。對於「線上」之定義為,任何公眾所可連結上之線上網站、網路應用軟體、數位軟體。對於「人類」之定義為自然人、有限公司、合夥、政府、團體等其他法律上組織或擬制人格。如業者使用對話機器人進行行銷、推銷時,有揭露其為對話機器人之事實,將不被認定違反對話機器人揭露法案,但揭露之手段必須明確、無含糊且合理可讓消費者知悉其所對話之對象為非人類之機器人。值得注意者為,美國加州對話機器人揭露法案,針對「美國本土造訪用戶群在過去12月間經常性達到每月10,000,000人」之網站,可排除此規定之限制。

  本法案僅課予業者揭露義務,至於業者違反本法之法律效果,依本法案第17941條,需參照其他相關法規予以決定。例如違反本法案者,即可能被視為是違反美國加州民法揭露資訊之義務者而需擔負相關民事賠償責任。最後值得注意者為,本法案於第17941條針對「利用對話機器人誤導公民其為真人同時影響公民投票決定」之行為,亦納入規範,亦即選舉人如有利用對話機器人影響選舉結果而未揭露其利用對話機器人之事實時,依本條將被視為違法。

本文為「經濟部產業技術司科技專案成果」

※ 美國加州「對話機器人揭露法案」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8203&no=57&tp=5 (最後瀏覽日:2026/02/14)
引註此篇文章
你可能還會想看
荷蘭資料保護局:Google隱私權政策違反該國資料保護法

  荷蘭資料保護局(Data Protection Authority, DPA)歷經長達七個月的調查,於2013年11月28日發布新聞稿,聲明Google違反該國資料保護法,因其未適當告知用戶他們蒐集了什麼資料、對資料做了些什麼事。   DPA主席Jacob Kohnstamm表示:「Google在未經你我同意的情形下,對我們的個人資料編織了一張無形的網,而這是違法的。」調查報告援引了Google執行長Eric Schmidt在2010年一場訪談中所說的話:「你不用鍵入任何字,我們知道你正在什麼地方、去過什麼地方,甚至或多或少知道你在想些什麼。」。   調查顯示Google為了展示個人化的廣告及提供個人化的服務,而將不同服務取得的個人資料加以合併,如搜尋記錄、所在位置及觀看過的影片等。然而,從用戶的觀點來看,這些服務係基於全然不同的目的,而Google亦未事先提供用戶同意或拒絕的選項。依照荷蘭資料保護法的規定,Google合併個人資料前,應經當事人明示同意,而該同意無法藉由概括(隱私)服務條款取得。針對DPA的聲明,Google回應他們已經提供用戶詳細資訊,完全符合荷蘭法律。   DPA表示將通知Google出席聽證會,就調查結果進行討論,並決定是否對Google採取強制措施。但是,從Google的回應看來,他們不太可能在聽證過後改變心意。以先前Google街景車透過Wi-fi無線網路蒐集資料的案例為鑑,Google(市值達3500億美元)若繼續拒絕遵循,將有可能面臨高達1佰萬歐元的罰鍰。

美國國家安全局發布「軟體記憶體安全須知」

  美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下:   1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。   2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。   3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。   搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。

美國國家標準與技術研究院「隱私框架1.0版」

  美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。   NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。   本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。

行動上網吃到飽對電信產業之影響

  隨著4G開台,各家電信業者為獲取用戶數,爭相推出無限上網吃到飽方案,然在數據流量呈現爆炸性成長下,電信業者之收益卻持續下探。為解決此問題,本研究嘗試提出建議方案,期望實現我國對數位經濟之願景。

TOP