美國專利法上的「銷售阻卻」(On-Sale Bar)

  美國專利制度中的「銷售阻卻」(On-Sale Bar)係指:發明銷售超過一年以上便喪失新穎性,不授予專利。

  「新穎性」為美國專利法上可專利性要件之一。35 USC §102(a)(1)說明新穎性先前技術的例外(Novelty; Prior Art):「專利申請應被核准,除非該發明已申請專利、曾在紙本文件敘述、公開使用(In public use)、販售(On sale)、或以其他方式公開(Or otherwise available to the public)。」35 USC §102(b)(1)則給予專利發明人和申請人1年新穎性優惠期(Grace Period)。將前後兩個條文合併來看--假設該發明銷售超過一年以上便不得再授予專利。

  「銷售阻卻」的立法意旨在於:避免發明人或其權利受讓人先將發明商業化並獲利,待競爭者進入市場後才提出專利申請,藉此有效地延長專利保護的期間,進而產生獨占(Monopoly)。
  1998年,美國最高法院於Pfaff v. Wells Electronics (1998)一案,揭示銷售阻卻的要件:(1)該產品必須是商業上販售的標的;(2)該發明必須已經準備好要進行專利申請。唯有這兩個要件成就,才開始計算「一年」。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國專利法上的「銷售阻卻」(On-Sale Bar), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8206&no=57&tp=5 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
何謂「數位藥丸(digital pill)」?

  「數位藥丸(digital pill)」顧名思義就是將藥物與數位科技結合,藥丸上載有感測器(sensor),在進入人體後傳輸訊號至病人身上的訊號接收器貼片,相關資訊再被傳送給醫療人員。由於許多研究顯示約有半數病人並不會完全遵照醫師指示服藥,使治療效果不彰,並造成醫療資源之浪費。而電子藥丸有助需長期頻繁用藥的族群定時服藥與協助醫療機構追蹤病人服藥狀況,並在臨床試驗中持續觀察病患用藥後的生理反應。   日前美國食品藥物管理署(Food and Drug Association)已接受Proteus Digital Health公司之上市審核申請,不久之後人們將有望享受到此數位藥丸帶來的便利。不過其亦存有一些疑慮以及待克服的技術問題,例如:個人資料之保護措施、控制藥物釋放之系統故障或遭惡意攻擊時之應變等等問題。同時,雖然許多人都認為數位藥丸對病人之疾病控制有利,但是病人之拒絕治療權卻可能因而犧牲,雖然醫生不能強迫病人服藥,但法院強制處分常會牽涉特定的治療程序,此時若病人拒絕服藥,其假釋可能被撤銷,該技術將可能成為一個監視的手段。

新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

美國法院將考慮命Google提交相關資料

  美國布希政府為捍衛1998兒童線上保護法(1998 Child Online Protection Act),要求法院命Google提交有關民眾使用該公司之搜尋引擎所輸入之關鍵字資料,以證明透過搜尋引擎,兒童使用電腦連結到色情網站並非不易。但是,Google主張此將會危及其使用者個人的隱私以及其營業秘密。   一名負責審理此案的法官於日前表示,其將會考量政府蒐集此等資料的需求以及Google之使用者的隱私保護議題,且其可能會允許司法部 (Justice Department) 可以接近使用 (access) 一部分由Google所建立的網站連結目錄,但並不是Google使用者所輸入的關鍵字資料。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP