美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下:
(1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。
(2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。
(3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。
(4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。
(5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。
(6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。
(7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。
(8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。
(9)人工智慧所產生之責任,應由設計者以及建造者負擔。
(10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。
(11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。
(12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。
(13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。
(14)人工智慧之技術應盡力滿足越多人之利益。
(15)人工智慧之經濟利益,應為整體人類所合理共享。
(16)人類對於人工智慧之內在目標應享有最終設定權限。
(17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。
(18)人工智慧所產生之自動化武器之軍備競賽應被禁止。
(19)政策上對於人工智慧外來之發展程度,不應預設立場。
(20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。
(21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。
(22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。
(23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。
本文為「經濟部產業技術司科技專案成果」
美國紐約第二巡迴法院上訴法院於2007年6月5日做出判決,認定FCC對於廣電節目是否違反猥褻言論規範之判斷標準為恣意專斷(arbitrary and capricious)的決定。此一案件起因於福斯電視台轉播2002年及2003年音樂告示排行榜頒獎典禮(Billboard Music Awards)時,歌手Cher及名人Nicole Richie分別在典禮中說出不雅言詞,事後FCC認定福斯電視台之轉播違反廣電節目之猥褻言論相關規範。福斯電視台對於FCC之認定不服,因而向法院提起訴訟。 依照過去FCC對猥褻言論之認定標準來看,「瞬間之咒罵言詞」(fleeting expletives)並不屬於猥褻言論,廣電節目中播出相關內容並不違反猥褻言論之管制規範。但自2003年起,FCC改變認定標準,認為所有不雅言詞均不可避免地帶有性暗示之內涵,因此廣電節目中凡涉及不雅言論之內容都是猥褻言論。 根據紐約第二巡迴法院上訴法院之判決指出,FCC的決定毫無疑問地改變了對於廣電節目是否違反猥褻言論規範之認定標準,且FCC對於改變認定標準一事所提出的理由並不具有說服力;FCC於訴訟過程中亦承認,即便在決定改變認定標準前,也沒有證據顯示廣播電視台曾密集播送充滿咒罵言論之內容。因此,紐約第二巡迴法院上訴法院認為,FCC改變認定標準一事乃是恣意專斷的決定,從而撤銷FCC對於福斯節目之認定。對於法院之判決,FCC主席Kevin Martin表示遺憾以及難以置信,將會委請律師研議是否繼續上訴最高法院。
英國金融科技未來政策展望英國為眾多國家中致力發展金融科技的佼佼者,其相關政府部門-英國金融行為監理總署(Financial Conduct Authority, FCA)早於2016年即推出世界首例金融監理沙盒(Financial Regulatory Sandbox)制度,同時也與英格蘭銀行致力發展開放銀行業務、金融創新項目以及監管措施改革等等。也因為英國為金融科技提供了良好的環境以及養分,使目前英國金融科技佔全球市場總額10%,並有71%的英國公民至少接受一間金融科技公司提供服務;2020年金融科技為英國吸引了41億美元的投資,遠超德國、瑞典、法國、瑞士和荷蘭的總和。 為使英國金融科技持續成長,英國財政大臣於2020年要求針對英國金融科技現況及未來發展進行獨立性研究,該研究並於2021年2月公布。根據研究報告指出,英國金融科技正面臨下述三大問題: 其他國家紛紛仿效英國之成功模式,致使英國金融科技不再具有獨占地位。 英國脫離歐盟導致監管措施的不確定性。 新冠肺炎的來襲,迫使各國均快速發展並靈活運用金融科技,導致英國金融科技優勢地位逐漸喪失。 為了解決上述三大問題,研究報告提出了五項建議計畫: 針對政策以及監管方式之持續進步 雖然英國目前仍處於金融科技政策以及監管的領先地位,但隨著業務、科技等發展,必須確保政策以及監管方式繼續保護金融消費者,同時創造鼓勵創新和競爭的環境。因此建議的方案包含:實施新型態監理沙盒(Scalebox);建立一個數位經濟工作小組以確保政府各部門之一致性;確保金融科技成為貿易政策的一部分。 培養人才 英國需要確保金融科技擁有充足的國內和國際人才供應,以及因為預計在2030年,英國有90%勞動者需要學習新技能,因此也需要培訓和提升現有和未來勞動力技能的方案。因此建議的方案包含:辦理針對成年人進行再培訓和提高技能之短期課程;創建一個新的簽證類型,以提高獲得全球人才的機會;為學習金融科技的學生以及創業者建立媒合平台,設置金融科技人才管道。 建立友善的投資環境 英國雖然透過私募基金成功地為英國金融科技事業募資,但英國仍應該持續加強金融科技事業從初創到公開發行的一系列融資過程,尤其是融資的後期階段。因此建議的方案包含:擴大金融科技獎勵措施以及便利金融科技事業籌資(包含:擴大研發稅收抵免額度、企業投資計畫、風險投資信託);英國應該另行增設一個約10億英鎊之基金供金融科技發展使用;放寬英國上市公司限制(例如:雙層股權結構);創設一個全球金融科技指數以擴大金融科技事業知名度。 與國際合作 雖然英國目前取得金融科技的成功和未來數位貿易崛起的機會,但仍應採取更多的措施用以獲得更多國際支持,這將會成為英國在脫離歐盟後針對國際開放性作出的重大表態。因此建議的方案包含:針對金融科技提出國際行動方案;推動設立金融、創新和技術中心,並成立國際金融科技工作小組;推出國際金融科技認證組合。 英國國內整合 金融科技在國家的支持下,英國各地皆分布大量的金融科技人才。為了保持英國作為金融科技中心的地位,英國須注重規模和支持區域專業,尤其是大學正在創造的重要的智慧財產權。因此建議的方案包含:培育十大金融科技重鎮,而每個重鎮均應設置一個以強化金融科技、培養專家以及增加國家競爭力為目的的三年目標;通過金融、創新和技術中心協調國內金融科技發展策略;通過進一步的投資計畫加快金融科技重鎮的發展以及成長。
為保護金融消費者日本金融廳研議「電子銀行法」相關立法二00四年十二月九日日本金融廳表示,為因應日益頻繁的網路及IC智慧卡被用以進行電子金融交易的現況,該廳將研議「電子銀行法」(暫稱)之立法以保障金融消費者,並將此納為未來施政方針。該項立法提案計劃已納入金融廳最新的金融行政方針─「金融重點強化計劃」(2005年4月起2007年3月止)之中,期待在2005年至2006年度間完成立法。 目前電子金融交易及電子現金等實務現況雖有可能涉及「電子簽章法」及「電子消費者契約法」的相關規範,惟金融廳的研究認為尚缺乏對此類交易活動的「總合性立法規範」。該立法研議甚擬導入對於因在網路上交易不慎遭受「冒名欺騙」 (?????;spoofing)的被害人,由金融機構為一定額補償的制度。
美國國家安全局發布「軟體記憶體安全須知」美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下: 1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。 2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。 3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。 搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。