美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下:
(1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。
(2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。
(3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。
(4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。
(5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。
(6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。
(7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。
(8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。
(9)人工智慧所產生之責任,應由設計者以及建造者負擔。
(10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。
(11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。
(12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。
(13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。
(14)人工智慧之技術應盡力滿足越多人之利益。
(15)人工智慧之經濟利益,應為整體人類所合理共享。
(16)人類對於人工智慧之內在目標應享有最終設定權限。
(17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。
(18)人工智慧所產生之自動化武器之軍備競賽應被禁止。
(19)政策上對於人工智慧外來之發展程度,不應預設立場。
(20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。
(21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。
(22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。
(23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。
本文為「經濟部產業技術司科技專案成果」
日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
VIZIO將為該公司為未獲消費者允可即蒐集收視行為等個人資料支付和解金。美國聯邦貿易委員會(Federal Trade Commission, 以下稱FTC)在2017年2月6號於其網站中公布, VIZIO, Inc.(以下稱VIZIO),世界最大的智慧電視製造商之一,在未取得購買該公司產品之千萬餘名消費者同意下,即於所生產之智慧型電視中,安裝蒐集消費者收視行為數據之軟體,然此舉業涉及違反美國聯邦貿易委員會法第45條(15 U.S.C. § 45 (n))以及紐澤西州消費者欺詐法(New Jersey Consumer Fraud Act)。為此VIZIO將支付和解金與美國聯邦貿易委員會及紐澤西州檢察總長辦公室。 本案起訴狀內容指出,VIZIO及其相關企業於2014年2月起便開始於其製造之智慧電視中獲取消費者在收視有線電視、寬頻、機上盒、DVD播放機、無線廣播以及串流裝置等相關影像資料時之資訊。這些資訊包含了性別、年齡、收入、婚姻狀況、教育程度、住屋資訊等交付與VIZIO、第三方及其相關企業做為行銷、發送特定廣告使用。 起訴狀中並稱該公司所謂之智能互動機制,雖可做為協助節目製作和建議,卻也同時於未對消費者詳細說明之下,逕行蒐集相關收視資訊,而此類追蹤消費者資訊屬不公平且欺騙的行為,已違反了FTC與紐澤西州對於消費者保護之法律。 為達成本案之和解,該公司願支付兩百二十萬美元作為和解金,包含向FTC繳納的一百五十萬美元及一百萬美元罰款與紐澤西州消費者事務所。聯邦法院命令並要求VIZIO必須清楚揭露其蒐集資料及分享給他方單位之行為,並取得消費者明示同意;另一方面,該命令亦禁止VIZIO對他們所蒐集消費者之隱私、安全及機密性資訊做誤導性的不實陳述以及刪除於2016年3月1日前所有以不當方式取得之消費者個人資料。該公司尚須接受兩年一次的隱私權安全保障計畫(名詞),包括全面性隱私風險評估、識別消費者個資之潛在不當使用情形,並制訂相關措施來修復這些風險。另新增一項銷售管理計畫,以確保該公司產品經銷商及售後服務均能就消費者個人資料得到保障。 此次事件而言,和解金雖非屬可觀之金額,然重點在於作為世界最大的智慧電視製造商之一的VIZIO,經揭露此一訊息後對其商譽之影響,或許才是最大的打擊。為了在大數據時代中能有效的管控法律風險,任何蒐集消費者行為等個人資料時,均應符合相關法令的規範,如建立個人資料保護機制並事前告知取得消費者蒐集之同意為宜。
國際能源總署發布「二氧化碳封存資源及其開發」手冊,協助能源部門及利害關係人了解地質封存效益、風險及社會經濟相關考量國際能源總署(International Energy Agency, IEA)於2022年12月發布「二氧化碳封存資源及其開發」手冊(CO2 storage resources and their development: An IEA CCUS Handbook),概述地質封存之效益、風險與社會經濟相關考量,並補充2022年度7月份的碳捕捉、利用及封存(Carbon Capture, Utilization and Storage, CCUS)法律和監管框架。該手冊架構可分為九個章節,重要章節包含:碳封存資源概述、碳封存開發生命週期、評估階段開發、風險管理、商業化、以及提供具體建議予決策者或私營部門。 由於CCUS涉及複雜管理及營運模式,IEA為決策者確立五個總體行動,簡述如下:(1)識別封存資源並提供必要資料:現有的地質資料是寶貴的起點,政府可以將現有資料數位化並建置資料庫,便於私部門獲取資訊。(2)確保法律與管制框架符合CCUS需求:政府應全面盤點既有法制體系是否到位,並應解決下列幾個關鍵問題:碳封存特定責任與風險、建立明確與適當的許可流程、地下孔隙空間的所有權、案場管理要求(如監控、關閉等)。(3)制定支持碳封存的政策:如將CCUS納入國家能源及氣候計畫、制定CCUS路線圖以協調發展策略、進行全面資源評估、制定獎勵措施(如獎勵資金、稅收抵免、可交易的憑證、鼓勵降低成本的創新計畫、風險緩解措施、碳定價等)。(4)支持先驅者並促進投資:產業先驅者時常面臨發展尚未成熟的開發環境或法制體系,因此建議政府得給予先驅者特定的獎勵措施。(5)支持發展CCUS的技術、專業能力:鼓勵石化與天然氣產業朝向CCUS轉型,如提供相關知識並培養相關技術,支持持續就業並避免人才流失等。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。