美國加州「Asilomar人工智慧原則決議」

  美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下:

(1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。
(2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。
(3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。
(4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。
(5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。
(6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。
(7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。
(8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。
(9)人工智慧所產生之責任,應由設計者以及建造者負擔。
(10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。
(11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。
(12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。
(13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。
(14)人工智慧之技術應盡力滿足越多人之利益。
(15)人工智慧之經濟利益,應為整體人類所合理共享。
(16)人類對於人工智慧之內在目標應享有最終設定權限。
(17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。
(18)人工智慧所產生之自動化武器之軍備競賽應被禁止。
(19)政策上對於人工智慧外來之發展程度,不應預設立場。
(20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。
(21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。
(22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。
(23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國加州「Asilomar人工智慧原則決議」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8213&no=55&tp=1 (最後瀏覽日:2025/12/21)
引註此篇文章
你可能還會想看
東京都公布「新創全球創新政策」

東京都政府在2022年底發布了「新創全球創新政策」,希望能透過新創全球化的發展帶動產業年輕化,挽救東京在全球新創圈的頹勢。2022年新創生態城市排名東京名列第12名,在其之前的亞洲城市包含第5名的北京、第8名的上海及第10名的首爾,說明了東京在亞洲城市的新創生態排名不如其城市發展一樣的領先群雄。其手段包含在2023年2月以Sustainable High City Tech Tokyo(永續科技城市東京,簡稱為SusHi Tech Tokyo,取壽司的日文諧音)為題,展開一連串將東京打造成新創城市的策略。 關於「新創全球創新政策」中法制方面的政策規劃如下: 1.重新設計法規以培養國內企業家-掌握新創公司的需求,舉行說明會或交流會,來具體後續修法內容。除此之外建立伴走支援制度蒐集新創事業之需求,整合需求對接各主管機關,並協助制度修改之後續追蹤。 2.重新設計全球企業家進入日本的法規-為了增加東京本土的創業公司數量,並加速東京創業公司的全球擴張,制定從海外吸引高級人才的規定,將提出一系列放寬高技能人才簽證簽發條件的特區提案。 3.協助日本新創企業留住外國人才-鬆綁留日簽證規定,使在日一流大學畢業的高階外國人才得於畢業後進入日本新創企業就業或自行成立新創企業。 其他包含結合相關單位包含大學、財團法人與政府部門一同為新創提供支持、培育年輕人創業精神及全球化技能、辦理全球性活動City-Tech.Tokyo並以全國一個品牌的方式向國際推廣日本新創,透過這個「新創全球創新政策」讓日本新創生態發展奪回亞洲冠軍拚向世界前段班。 綜觀來看,東京的「新創全球創新政策」以城市做主體,展現了東京轉變的決心,不只要走在日本最前端更是要走在世界城市的前端。

美國國安局網站違法使用長期性“Cookies”

  雖然美國政府明文規定禁止聯邦政府機關使用長期性“Cookies”,但國家安全局(The National Security Agency, NSA)近日卻被發現將永久性“Cookies”放置於造訪該網站民眾之電腦之情形,且保存期限長達30年(直到2035年)。   所謂“Cookies”,指於使用者端紀錄該用戶造訪某一網站的過程與從事之活動,以使得下次進行相同網路瀏覽更為容易之工具。例如,透過Cookies紀錄的功能,使用者就可以將帳號與密碼記載於電腦中,再次造訪時即不用再次輸入帳號密碼以提供認證。   根據預算管理(Office of Management and Budget, OMB)於2000年公布之備忘錄Memorandum for the Heads of Executive Departments and Agencies(M-00-13)指出,聯邦政府機關除在於「必要需求」(Compelling need)下,不得使用長期性的“Cookies”。所有留在造訪民眾端的“Cookies”,必需隨著用戶關閉視窗而被消除。   NSA發言人Don Weber表示,NSA網站過去所使用的“Cookies”都是會隨者造訪者關閉網頁即刪除的暫時性“Cookies”,而這次之所以會產生長期性的“Cookies”留存在造訪者端,完全是因為NSA電腦系統更新不小心產生的,並非刻意用來作為監視使用者之工具。但民間團體則表示,這顯示了聯邦政府機關缺乏對於隱私權規範之認知,違反了國家最基本的隱私保護規範還不自知。   目前NSA已修正該程式,並清除了這些長期性的“Cookies”。

IBM同意中國大陸政府檢視部份產品原始碼

  近年來中國大陸政府為了資安考量,制訂相關法規要求外國科技公司進入中國大陸市場時必須提供程式原始碼,避免他方非法(例如利用病毒)透過電腦軟體進入中國大陸的系統和資料。   IBM公司近日發表聲明,允許特定國家在其嚴格的監控下,檢視其部份產品的軟體原始碼,確保產品沒有資訊安全的漏洞,中國大陸也在這些特定國家之列。這是美國重要的科技大廠,首次公開同意遵守中國大陸政府對於外國技術的資訊安全審查,然而此舉讓美國政府與其他矽谷科技公司頗有微詞。   IBM開放檢視其程式碼的對象為中華人民共和國工業與信息化部。IBM在聲明中表示,原始碼的檢視必須在IBM公司內,於無網路連線並受IBM安全應用程式監控的環境下進行,並保證這些軟體原始碼不會被釋出、被複製,或以任何方式改作。在嚴格的環境和時間限制下,IBM不會讓中國大陸政府有機會接觸其客戶資料庫,也不會涉及後門程式(back door)。至於會提供哪些產品的原始碼檢視,或中國大陸官方可檢視的時間有多長,IBM尚無明確說明。事實上IBM並非唯一提供程式碼的科技公司,微軟公司早在2003年即允許中國大陸、俄國、英國等國家檢視微軟Windows部分產品的原始碼。   有市場分析公司指出,IBM為降低智慧財產權被複製的風險,所釋出的原始碼可能只涉及基本功能,不包含專有的演算碼,且像IBM此類的公司,應該擁有閉源軟體(closed-source)或特別的軟體以嚴密地維護底層的原始碼,避免中國大陸政府藉由檢視原始碼執行反向工程(Reverse Engineering)。   IBM公司願意提供中國大陸政府檢視部分產品原始碼,目的在於展示其產品安全性,試圖擴展IBM在中國大陸的商業版圖。IBM旗下的雲端運算平台Bluemis未來將與中國大陸的數據中心服務公司—北京世紀互聯寬帶數據中心有限公司合作。該公司同時也是微軟在中國大陸的合作夥伴。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP