相較於綠色採購(Green public procurement, GPP)所揭櫫的於採購產品、服務或勞務時選擇於其生命週期中對於環境造成衝擊較小者,循環型採購(Circular Procurement)可說是在綠色採購的基礎上,加入循環經濟(Circular Economy)強調最大化資源利用效率的概念,使對於環境的影響與衝擊並非唯一的標準,而應考量產品、服務或勞務對資源的利用效益。
歐盟執委會於2017年10月發布《循環經濟公共採購範例與指引》(Public Procurement for A Circular Economy: Good Practice and Guidance),其中指出循環型採購的意義在於促進歐盟邁向循環經濟轉型,藉由循環型採購所創造的需求,達成循環經濟所強調封閉資源循環(Closing the Loop)以最大化資源利用效率的概念,並肯認政府採購為推動循環經濟轉型的重要誘因之一。
具體的循環型採購做法,包含選擇具高度資源循環利用性的產品,例如可維修、再利用或利於回收再循環的產品,以及以採購服務代替採購硬體等,透過循環型採購對於資源利用效率的重視,支持符合循環經濟概念的產品設計、研發技術與商業模式等創新成果,與提出這些解決方案的企業或團隊,進而達成促進社會邁向循環經濟轉型與永續發展的目標。
本文為「經濟部產業技術司科技專案成果」
日前,歐盟執委會於2008年1月23日提交了一份關於整合性發展境內替代能源之新法制架構指令建議案,並欲藉該建議案來進一步促進生質能、太陽能與風能等相關新興能源技術之開發。該建議案還提到,歐盟所屬會員國原則上須依據於2005年當時替代能源之貢獻比例為基礎,再向上調增5.5%後來作為該會員國之替代能源預定貢獻目標。不過,考量各會員國之國情並不相同,故該建議案要求歐盟對於各會員國替代能源預定貢獻目標之制定,應採「差別化」之方式,使其可先自由調整與決定究欲採取何種比重與模式來發展各類替代能源,最後,再將所決定之能源發展策略大綱置於國家行動方案書內(National action plans, 簡稱NAP),並於2010年3月31日前提交執委會進行審核。此外,執委會也設定了一系列短期性目標,以確保能漸次穩定地朝2020年之目標前進。而有關開發生質能及永續性方面,鑑於生質燃料之發展仍具相當之爭議,故於飽受各界沉重之壓力下(如:非政府民間組織以及科學聯盟團體),未來布魯塞爾方面勢要提出一更加周嚴之永續性基準,以確保在該建議案所制定之生質燃油目標下,不會進一步導致生態系統失衡、森林濫伐、人口遷徙、糧食價格上漲以及釋放更大量CO2等問題產生。
日本數位市場競爭中期展望報告提出數位市場競爭短中期策略日本數位市場競爭本部(デジタル市場競争本部)於2020年6月發布了「數位市場競爭中期展望報告」(デジタル市場競争に係る中期展望レポート案),該報告認為大型數位平台業者透過龐大的用戶資料,不斷地(1)擴大並連結用戶、(2)垂直整合上下游產業並(3)從虛擬鎖定實體的銷售,對市場形成動態競爭(ダイナミック競争)結果。此一結果將導致數位市場極易形成掠奪性定價或併購的風險、資料集中的風險、資料可靠性的風險,甚至是個人價值判斷的風險。 為促進數位市場的治理與信任,該報告提出了以下短期與中長期的政策方向: 鼓勵企業數位轉型以增加數位市場的多樣性:推廣數位轉型指標、擴大沙盒制度適用、加速數位政府戰略。 建立數位市場競爭制度:運用經濟分析強化競爭管制、推動《數位平臺交易透明法》(デジタルプラットフォーム取引透明化法)法制化、建立大型數位平台調查機制。 建構去中心化的資料治理技術:透過資料持有、交換的「去人工干預」,形成一個可信任的網路世界。 該報告已於2020年8月7日完成公眾意見募集,預計於2020年年底前提出最終報告。目前日本新經濟聯盟認為,高頻率的競爭策略以及智慧化交易模式下的反壟斷政策,除了不正競爭的禁止外,政府更應著重在透明化檢視機制的建立。此外報告目前並未處理到平台資料治理的課題,聯盟對此認為政府應更積極地從資料壟斷的概念,調整數位市場准入的障礙。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
美國專利局授予Chromatin公司獨占植物小染色體權利美國專利局日前核准美國Chromatin公司一項指標性專利,該專利係用在動植物細胞上,作為傳遞媒介的小染色體建構物(construction of mini-chromosomes as vectors for plant and animal cells),與使用基因工程小染色體創造轉基因植物的技術(techniques for creating transgenic plants using engineered mini-chromosomes)。這項專利的重要性並非針對特定的植物品種,而是使Chromatin公司在植物使用小染色體的技術上,取得的獨佔權利。 此項專利的技術最初由芝加哥大學的研究人員所開發,該校將技術專屬授權給Chromatin公司,並允許該公司為了商業目的進行轉授權(sublicense)。該公司在這方面的相關權利上,可謂積極進行佈局,並已經擁有超過40項,包括小染色體設計、傳遞與使用等方面的專利權、專利申請與發明。該項專利所描述的技術,可在植物中同時增添幾個基因(gene stacks),不但可節省研發時間,並可衍生具商業價值的新產品。此外,確認用作植物絲點(plant centromeres)的核酸序列,可使該公司在多種植物品種中,產生穩定的DNA構成物(stably inherited DNA)與小染色體。 Chromatin公司主要業務,為開發與銷售促使整個染色體經設計或經混合,而進入植物細胞之新穎技術。這些經過處理的染色體,在維持對基因表現作精確控制的狀況下,可同時將多功能的基因注入植物細胞中。Chromatin公司利用這些新基因工具來設計與銷售產品,這些產品可賦予植物更多的商業價值,包括改進養分與健康特性,在用途上則包括工業、農業與醫藥產品的開發。