循環型採購(Circular Procurement)

  相較於綠色採購(Green public procurement, GPP)所揭櫫的於採購產品、服務或勞務時選擇於其生命週期中對於環境造成衝擊較小者,循環型採購(Circular Procurement)可說是在綠色採購的基礎上,加入循環經濟(Circular Economy)強調最大化資源利用效率的概念,使對於環境的影響與衝擊並非唯一的標準,而應考量產品、服務或勞務對資源的利用效益。

  歐盟執委會於2017年10月發布《循環經濟公共採購範例與指引》(Public Procurement for A Circular Economy: Good Practice and Guidance),其中指出循環型採購的意義在於促進歐盟邁向循環經濟轉型,藉由循環型採購所創造的需求,達成循環經濟所強調封閉資源循環(Closing the Loop)以最大化資源利用效率的概念,並肯認政府採購為推動循環經濟轉型的重要誘因之一。

  具體的循環型採購做法,包含選擇具高度資源循環利用性的產品,例如可維修、再利用或利於回收再循環的產品,以及以採購服務代替採購硬體等,透過循環型採購對於資源利用效率的重視,支持符合循環經濟概念的產品設計、研發技術與商業模式等創新成果,與提出這些解決方案的企業或團隊,進而達成促進社會邁向循環經濟轉型與永續發展的目標。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 循環型採購(Circular Procurement), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8214&no=55&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
桃莉羊誕生十年 複製技術之醫療運用距收成階段仍遙遠

  十年前的 7 月 5 日 ,全世界第一隻複製的哺乳類動物桃莉羊在英國誕生。 複製羊成功的案例,吸引了如潮水般的錢潮,流入探索利用這項新技術的領域,諸如有關治療癌症、心臟病、阿茲海默症和其他嚴重疾病的研究。科學家應用在姚莉身上的技術是屬於「細胞核轉置技術」( SCNT ),簡言之,是把卵子的細胞核取出,然後把身體細胞的細胞核放入這個卵子中。在這個新建構的卵子中,只有來自身體細胞的染色體,而沒有原卵子的染色體,新卵子中僅含有提供身體細胞者的基因組,所以稱之為「複製」。科學複製有很大的潛在風險,代價又高,但它對醫學研究仍有很大的貢獻,其中最引人注意的,就是可取得胚胎幹細胞。   幹細胞是一群尚未完全分化的細胞,同時具有分裂增殖成另一個與本身完全相同的細胞,以及分化成為多種特定功能的體細胞兩種特性,在生命體由胚胎發育到成熟個體的過程中,扮演最關鍵性的角色。研究人員相信未來可以利用幹細胞,修復或是更換受傷或是病變的器官中的細胞或組織,特別是利用有患者自己基因的幹細胞組織移植,可以避免免疫系統的排斥現象。   當年科學家複製桃莉羊時所抱持之野心不小,然而這十年來,科學家們並沒有能夠達成以幹細胞治療人類疾病的目標,雖然因複製 技術本身具有高度爭議性,許多國家已立法予以規制,然卻依舊無法避免如 前首爾大學教授黃禹錫偽造幹細胞研究成果的醜聞發生,這項醜聞使原本即因幹細胞研究和倫理會產生衝突而不易獲得公私部門經費支持的研究工作,更為雪上加霜。   英國胚胎學者指出,回顧過去醫學研究史上的新發現,不論是試管嬰兒或是其他的技術,從第一次到最後技術完全成熟階段,都需要花很長的時間一步步完成,未來可能還需要五十年的時間,複製技術對醫學的貢獻才可能到達豐收階段。

歐盟網路中立性議題發展—2009~2013年兩次電子通訊管制法律改革之觀察

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

產業競爭力強化法新發展-以企業實證特例制度實例為中心

TOP