一、立法背景
由於美國國家海洋暨大氣總署(National Oceanic and Atmospheric Administration,縮寫NOAA)於2018年間發布關於氣候變遷將導致經濟發展受到影響之相關報告,同時間,美國最高法院拒絕駁回2015年由21位民眾及美國Our Children’s Trust(非政府組織)對聯邦政府所提起之訴訟,主張美國政府並未循正當法律程序,即鼓勵對環境保護傷害甚鉅之石化能源開發。因此聯合國人權暨環境特別報告(UN Special Rapporteur on human rights and the environment)呼籲各國盡快針對環境變遷採取相關行動,美國國會議員Ed Markey及Alexandria Ocasio-Cortez遂基於上述情事於2019年2月7偕同提出綠色經濟草案(下稱本草案)。
二、草案簡介
所謂綠色經濟,是因應全球經濟危機、氣候變遷、石油資源枯竭而提出,其內容包括金融及租稅政策的重建以及再生能源的運用,初始概念於2007年由一位記者刊載於時代雜誌與紐約時報,後相關倡議人士遂依此成立非政府組織The Green New Deal Group,並於2008年廣泛發行相關刊物。
三、草案內容
本草案賦予政府五大義務:溫室氣體零排放、創造百萬高薪工作機會、投資基礎設施及工業、永續環境(諸如確保空氣、水質、氣候、食品之安全、韌性社區之推動)、反壓迫等,且內容上更將前開義務再行細分為14項目標計畫,並訂定10年執行期間。
上揭14項目標計畫的內容大致可分為五類,分別為:提升基礎設施以因應各種氣候變遷所造成之災害、將政府所需能源全數轉換為零碳排放、提升電力及能源效率、消除製造業與農業所造成之汙染與溫室氣體的排放,另外亦全面將大眾運輸設施改建為高速及零碳排放系統。
為達成前述14項目標,本草案一共訂定15項須政府配合之細項,方向上包括:給予社區、組織、機關、地方政府及各法人相關協助、提供適切之訓練課程及高等教育、針對新興科技之研究與開發進行投資、提高家庭所得及保障各級勞工組織工會之權利、提供全民高品質之健康照護。
歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年11月發布《物聯網安全準則-安全的物聯網供應鏈》(Guidelines for Securing the IoT – Secure Supply Chain for IoT),旨在解決IoT供應鏈安全性的相關資安挑戰,幫助IoT設備供應鏈中的所有利害關係人,在構建或評估IoT技術時作出更好的安全決策。 本文件分析IoT供應鏈各個不同階段的重要資安議題,包括概念構想階段、開發階段、生產製造階段、使用階段及退場階段等。概念構想階段對於建立基本安全基礎非常重要,應兼顧實體安全和網路安全。開發階段包含軟體和硬體,生產階段涉及複雜的上下游供應鏈,此二階段因參與者眾多,觸及的資安議題也相當複雜。例如駭客藉由植入惡意程式,進行違背系統預設用途的其他行為;或是因為舊版本的系統無法隨技術的推展進行更新,而產生系統漏洞。於使用階段,開發人員應與使用者緊密合作,持續監督IoT設備使用安全。退場階段則需要安全地處理IoT設備所蒐集的資料,以及考慮電子設備回收可能造成大量汙染的問題。 總體而言,解決IoT資安問題,需要各個利害關係人彼此建立信賴關係,並進一步培養網路安全相關專業知識。在產品設計上則須遵守現有共通的安全性原則,並對產品設計保持透明性,以符合資安要求。
智慧電網重要法制議題研析探討及因應 美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。