美國國會於2018年8月13日通過之《出口管制改革法》(Export Control Reform Act of 2018, ECRA)第1758條,以國家安全為由,授權商務部建立對美國新興與基礎技術出口、再出口或移轉之認定與管制程序。有鑑於此,商務部下轄之工業安全局(Bureau of Industry and Security, BIS)於同年11月19日發布了法規制定預告(advance notice of proposed rulemaking),對外徵求關於認定「新興技術」之意見。
BIS指出,美國政府多年來依循《出口管制條例》(Export Administration Regulations, EAR)限制特定敏感技術或產品出口,以避免關鍵技術落入他國手中。惟既有之審查範圍已不足以涵蓋近年許多重大創新技術,故BIS先行臚列了14項擬在未來實施出口管制的新興科技,向公眾徵求其是否確屬「涉及國家安全之特定新興技術」相關意見。該14項科技包含:(1)生物技術;(2)人工智慧與機器學習技術;(3) 定位、導航和定時技術;(4)微處理器技術;(5)先進計算技術;(6)數據分析技術;(7)量子信息和傳感技術;(8)物流技術;(9)積層製造技術;(10)機器人;(11)腦機介面;(12)高超聲速;(13)先進材料;(14)先進監控技術。
除此之外,民眾亦得對如何認定「新興技術」提出一般性之意見,俾將來政策實施更加周全。意見徵求期間從2018年11月19日起,至2019年1月10日截止。
本文為「經濟部產業技術司科技專案成果」
2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。
Blackberry向法院起訴指控Snap專利侵權2018年4月3日,Blackberry Limited(下稱Blackberry)向美國加州地方法院起訴(18-cv-02693),指控Snap Inc.(下稱Snap)的應用程式Snapchat,侵犯其包括行動裝置地圖改善技術、廣告技術和行動裝置的使用者介面改善技術共6項專利權。Blackberry指出Snapchat的地圖功能侵犯其關於定義與其他活動中用戶相對位置的專利;廣告功能侵犯其推播資訊至行動裝置的專利;通知點(Notification Dot)的未讀訊息計數顯示,侵犯其關於預覽新事件的專利。 Blackberry在今年3月也曾對Facebook提起訴訟,指控其社交平台Whatsapp和Instagram侵犯了Blackberry的專利權。對Snap提出的侵權訴訟中涉及的兩件專利US 8,209,634(下稱'634專利)和US 8,301,713(下稱'713專利),也同樣出現在對Facebook提起的訴訟案件。'634專利是關於通知點(Notification Dot)計數顯示的專利,而'713專利則是關於在傳訊對話中顯示時間資料的專利。 Snapchat是Snap在2011年9月發表的即時通訊應用程式,比Blackberry的通訊應用程式BlackBerry Messenger(下稱BBM)發表時間晚了6年。Blackberry認為其通訊應用程式,至今已成功使得全球有數十億的消費者在行動裝置上使用即時通訊。Snap使用Blackberry的智慧財產權並與Blackberry在即時通訊領域中競爭,分散了BBM的使用者,轉而選擇使用Snapchat,使Snap獲得可觀的不法利益。Blackberry因此向法院主張Snap應彌補其侵權行為對Blackberry所造成的損失。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
加拿大政府就生成式人工智慧對著作權的影響進行公眾諮詢加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下: 1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。 2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式: (1)闡明著作權保護只適用於自然人創作的作品; (2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者; (3)為人工智慧生成的作品創設一套新的權利。 3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。 生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).