美國如何管制新興技術出口

  美國國會於2018年8月13日通過之《出口管制改革法》(Export Control Reform Act of 2018, ECRA)第1758條,以國家安全為由,授權商務部建立對美國新興與基礎技術出口、再出口或移轉之認定與管制程序。有鑑於此,商務部下轄之工業安全局(Bureau of Industry and Security, BIS)於同年11月19日發布了法規制定預告(advance notice of proposed rulemaking),對外徵求關於認定「新興技術」之意見。

  BIS指出,美國政府多年來依循《出口管制條例》(Export Administration Regulations, EAR)限制特定敏感技術或產品出口,以避免關鍵技術落入他國手中。惟既有之審查範圍已不足以涵蓋近年許多重大創新技術,故BIS先行臚列了14項擬在未來實施出口管制的新興科技,向公眾徵求其是否確屬「涉及國家安全之特定新興技術」相關意見。該14項科技包含:(1)生物技術;(2)人工智慧與機器學習技術;(3) 定位、導航和定時技術;(4)微處理器技術;(5)先進計算技術;(6)數據分析技術;(7)量子信息和傳感技術;(8)物流技術;(9)積層製造技術;(10)機器人;(11)腦機介面;(12)高超聲速;(13)先進材料;(14)先進監控技術。

  除此之外,民眾亦得對如何認定「新興技術」提出一般性之意見,俾將來政策實施更加周全。意見徵求期間從2018年11月19日起,至2019年1月10日截止。

本文為「經濟部產業技術司科技專案成果」

※ 美國如何管制新興技術出口, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8218&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
中國大陸國家新聞出版廣電總局重新建構網路服務管理規範

區塊鏈技術運用於智財保護

  區塊鏈技術具有去中心化、透明性、開放性、自治性、訊息不可篡改、匿名性等六大特徵,可加密記錄該系統上所有使用者之行為資訊,並使該資訊不易篡改。其最初被運用在虛擬貨幣比特幣(Bitcoin)的建構,發展至今應用已拓展至諸多領域,包括對智慧財產權的保護。美國的blockai網站即是將區塊鏈技術運用於智財保護的實例之一,美國過去由國會圖書館負責著作權之管理之作法,在程序上曠日費時且效率不彰,故blockai於2015年創立於美國舊金山,旨在提供著作人更簡單有效的選擇。其作法係由著作人於blockai註冊帳號後進行作品之註冊並取得一相應之著作權證書,並由blockai以區塊鏈技術建立公眾資料庫,透過區塊鏈不可篡改、透明開放等技術特徵來證明作品確由著作人創作,利於後續舉證維權。現階段blockai開立之證書雖未被授與法律上地位,但依區塊鏈的技術特徵,可望成為法庭攻防上著作人有力之科學證據。   揆諸我國相關法律,我國非採著作登記制,著作人為維護自身權利需先證明系爭著作為自己所創作,惟訴訟實務上著作人多半舉證不易。若參考美國作法導入區塊鏈技術落實著作權保障,或可作為科技整合法律之新標竿。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

稻米基因定序大功告成,有助解決全球糧食問題

  由十個國家的科學家共同努力完成的「國際水稻基因組定序計畫( IRGSP )」,其研究成果刊登於最新一期的 Nature 期刊。科學家們共同解讀水稻 12 條染色體的基因密碼,未來將根據這些密碼來控制水稻的生長和結穗,可望有助解決全球糧食問題。   依聯合國統計資料顯示,水稻是全球人口 20% 的食物能量來源,而在全球人口持續擴增之情況下, 2025 年必須提高 30% 的水稻產量,才能擁有足夠糧食。   自1998 年起,本計畫即在日本主導之下,與中華民國、韓國、英國、加拿大、美國、巴西、印度、法國與中國等國之定序實驗室進行分工、共享,定序後的 DNA 序列將放在公開序列資料庫,供研究人員使用;而本計畫已在 2002 年底完成草圖,並陸續完成彌補空隙與基因註解工作。本計畫之成果於近幾年來,已陸續協助辨識數個影響重要農藝性狀的基因,例如,影響植物生長勢、提高水稻產量的基因、改變水稻光週期、使優良栽培種得以擴展種植面積的基因、控制植株高度的基因等。  水稻基因組定序工作之完成宣告後基因組時代的正式來臨,而完成此一世紀任務之際,善用相關經驗與新知,以投入水稻的深入研究工作,將能台灣水稻及其他作物的遺傳育種研究提供實際幫助。

TOP