中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。
此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。
中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。
日本獨立行政法人情報處理推進機構於2025年6月11日發布《日本發布策略性資料使用之資料管理指南(下稱《指南》)》,旨在協助企業將資料視為資產與產品,以策略性的運用資料。 《指南》指出,資料管理是指企業針對其所擁有的所有資料,進行有效率的收集、整理、保存、共享、分析與運用的一套系統化流程,其目的是為了透過確保資料品質及正確性,協助業務決策,並確保企業的競爭優勢。 在現代企業經營中,資料具有雙重屬性,亦即資料除了是企業重要的經營資產,同時也是企業的產品之一。作為資產的資料如同設備等一般資產,是可供銷售或提供服務的資產,故為最大化其價值並促進成長,需要進行適當管理與投資。此外,由於資料具有可複製性,因此一經外洩,將會造成廣泛且持續性的影響,因此需進行資料管理以確保資料安全性;作為產品的資料則需要有效的整備及管理,以確保維持其正確性所需的品質。 根據《指南》,資料管理的核心在於其需要貫穿資料生命週期,且隨著數位化的進展,對於資料管理亦產生新的需求,例如針對資料多元運用需求之應對、資料須具備可追溯性、針對機密資料之管理方式、確保資料安全性及資料品質等。 為因應新興資料管理需求,《指南》建議可透過評估自身定位、規劃必要體制、思考資料策略及管理架構、盤點企業既有資料及必要資料、培養及建立企業從決策層到執行層的人員均重視資料的資料文化,以及減少不必要或易出錯的作業流程等六項具體措施,建立企業自身貫穿資料生命週期之資料管理流程。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料管理流程,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為資料管理流程設計與實務落實之參考,以強化自身資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
澳洲專利法新制上路澳洲於去(2012)年通過「智慧財產權法修正案」 (Intellectual Property Laws Amendment Act 2012),主要修正條文已於今(2013)年4月15日起正式施行。此次的修法大幅度提高了可專利性的審查標準,為澳洲專利制度帶來重大變革。新法適用於2013年4月15日以後提出實體審查申請之專利申請案,在新法施行後專利申請案將受到更嚴格的審查。 重要修正如下: ‧新法去除了舊專利法關於先前技術的地理區域範圍的限制。將其他各國的先前技術也一併納入考量,規範較舊法更為國際化。 ‧新法只要求所屬技術領域具有通常知識者「可能了解」且「技術相關」即可,放寬了用來判斷進步性根據之先前技術標準,使得符合進步性的要求較舊法為提高。 ‧新專利法要求專利說明書需揭露系爭發明特定的(specific)、主要的(substantial)、可信的(credible)用途,以滿足實用性的要件。此外,專利說明書上之描述必須清楚且完整,使所屬技術領域中具有通常知識者得以了解文件內容並可據以實施, ‧新法對於可專利性的認定改採「概然性權衡」(balance of probabilities)標準,亦即若專利審查員認為,未來在進行專利有效性審理,法院有超過50%的機率認定系爭發明不具可專利性時,審查委員即得駁回該申請案。 ‧增加了修正專利說明書時禁止加入新事項的限制規定,對於專利的申請益趨嚴格。 此次修法是澳洲專利制度近20年以來的最大變革,經過此次修正可預見未來申請取得澳洲專利的難度將大幅提升。更值得注意的是,由此次修正,可發現澳洲專利制度已向大多數國家的規範靠攏,使得澳洲專利法與國際間其他國家如美國、歐盟等國家的規定更為協調一致。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
NIH公布最新GWAS基因型與表現型數據資料庫分享近用方針經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。 因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。 方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。