美國證券交易委員會對虛擬貨幣交易平台提起訴訟

  美國證券交易委員會(The Securities and Exchange Commission,以下簡稱SEC)於2018年11月8日發出聲明,依據1934年的證券交易法(下稱證交法)第21C條對EtherDelta 創辦人Zachary Coburn 提起訴訟,並做出要求其停止交易之禁止令。

  EtherDelta 乃為一線上交易平台,允許買家和賣家在其平台上交易「以太幣」和其他虛擬貨幣。其平台特徵有:

  1. 提供平台,促成虛擬貨幣交換
    EtherDelta之網站提供一線上平台予買賣雙方,對經過平台認證的虛擬貨幣進行交易,促成虛擬貨幣交換。於網站成立之一年半中,其促成了360萬筆訂單。
  2. 以智慧合約自動驗證進行交易
    EtherDelta以智慧合約(smart contract)維持網站運作,其智慧合約檢查用戶發出之訊息是否有效,於確認買賣雙方帳戶都有足夠資金後,自動進行交易。
  3. 提供資訊且對用戶資格未設限
    EtherDelta於網站上提供虛擬貨幣之資訊,以及個別虛擬貨幣之每日交易量,同時於網站上顯示前500筆買方和賣方之交易資訊,以價格和顏色進行分類。而其對於成為網站用戶之資格並無限制。

  SEC於本案中認為,EtherDelta並未註冊成為證券交易所,卻執行與證券交易相關之業務,已違反證交法,其論述理由為:

  1. EtherDelta平台上之虛擬貨幣屬於證券性質
    本案SEC使用Howey Test—美國聯邦最高法院於1946年在SEC v. W. J. Howey Co. 一案中所確立之測試要件,來判斷是否符合證券。由於用戶以金錢購買虛擬貨幣,該金錢投資行為建立共同事業,且具有藉由他人努力而獲利之期待,故屬於證券性質之虛擬貨幣。
  2. EtherDelta性質上為交易所,但未為註冊
    EtherDelta 作為平台聚集大量投資人,並以智慧合約促成買賣雙方進行虛擬貨幣交換,已屬於實現證券交易之行為,具有證交所功能,故於不具有豁免情形下,其未註冊已違反證交法第5條規定。

  本案就SEC之主張,EtherDelta並未為否認或承認之表示,但同意該禁止交易之命令,並同意支付SEC行使歸入權之30萬美元及其他判決前利息和罰款。

  觀察目前美國對於虛擬貨幣買賣行為之監管,並無立專法規範,僅以證交法為準則,就個別虛擬貨幣之性質以Howey Test為檢驗,個案認定是否屬於證券。倘若屬於證券,則對於進行交易之平台課予證券交易所之責任,而對於虛擬貨幣而言,被認定為證券勢必被課予義務俾利增加投資人之保障,可能增加公開度及透明度,然其快速籌資之功能亦可能有所減損,SEC對於虛擬貨幣之監管影響與成效均值得繼續觀察之。另外,SEC曾於2017年7月25日針對The DAO做出一調查報告,其於報告中認為證券型之虛擬貨幣需要受到監管,從而本案作為DAO報告之後被裁罰之虛擬貨幣交易平台首例,有其作為里程碑之重要意義。首先其確立了SEC自DAO報告之後對於證券性質虛擬貨幣需監管之見解,再者表達SEC認為就算採用去中心化、分散式節點之方式進行證券交易,同樣屬於證交法所稱之「證交所」,不因此而豁免監管。

相關連結
相關附件
你可能會想參加
※ 美國證券交易委員會對虛擬貨幣交易平台提起訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8226&no=57&tp=1 (最後瀏覽日:2025/12/31)
引註此篇文章
你可能還會想看
專利申請 不見得先搶先贏

  「先申請不一定先贏」,經濟部智慧財產局完成「專利程序審查基準」草案,明定專利申請案若有不合程序者,就算是先提出申請的專利案件,可能面臨須重新審查,進而影響專利生效日,或者喪失優先權。   依新完成的專利程序審查基準規定,未來,申請人如果未補正,或補正仍不齊備者,則視其應補正的申請文件種類,分別為申請案不受理或產生一定法律效果。例如,申請人可能因此喪失優先權,或被視為未寄放,或者依現有資料重新審查等。先到先嬴的專利申請原則,將因新制施行而改變。 我國專利法內容,既為實體法,也為程序法,除規定准予專利權、撤銷專利權的程序、形式及實體條件外,也規定專利權及專利權管理事項,依「先程序後實體」原則,合於程序審查者,才能進入形式、實體審查,因此,無論是專利的初審、再審查或舉發等申請案,均與專利的程序審查,有密切關聯。由於我國專利法對於專利的申請採取「先申請原則」,申請日的認定,會影響到實體審查對專利要件判斷的時點,因此,申請日的認定,也是專利程序審查的主要重點。   程序審查內容及範圍,在各國審查實務上,雖有所不同,但是,包括審查各種書表是否採用主管機關公告訂定的統一格式;各種申請的撰寫、表格的填寫或圖式的製法,是否符合專利法令的規定;應該檢送的證明文件是否齊備,是否具備法律效力;申請日的認定;發明人或創作人及申請人的資格及程序是否符合規定;代理人是否具備代理的資格及權限;有無依法繳納規費等。   智慧局對於受理申請與文件審查,將分開進行,因此,專利申請人親自送件或郵寄案件,不論申請文件是否齊備,智慧局均會先行受理申請,待審查時,發現申請文件欠缺或不符合法定程式,而得補正者,再通知申請人限期補正。

Ofcom第八次電信與付費電視申訴報告

  Ofcom在今(2013)年3月公佈「2012年第四季電信與付費電視申訴報告書」(Telecoms and Pay TV Complaints Q4 2012),以履行2003年通信法(Communications Act 2003)第26條規定:Ofcom應公布通訊資訊與建議於消費者。是故,為維護消費者之權益,並促進市場競爭,Ofcom從2011年4月起每季公佈「電信申訴報告書」 (Telecoms Complaints);同年10月修訂為「電信與付費電視申訴報告書」(Telecoms and Pay Tv Complaints)。這份報告書不僅協助消費者選擇較好供應商,更意在促進業者服務品質,而從幾次報告書中顯示,業者們被投訴量確實持續下降,可見效果斐然。   Ofcom選擇市占率超過4%、且每月被投訴超過30次的市話、固網寬頻、行動通信服務(月租),與付費電視為調查對象,以維護統計信度。當消費者申訴具有綑綁式服務(bundled services)業者,則視其申訴是否涵蓋多種服務,以Sky同時具有電話、網路服務為例,當民眾申訴廣告不實後,則此申訴僅被記錄於網路服務。由於,民眾申訴範圍相當廣泛而難以統整,Ofcom僅向外界公布業者被投訴的次數,且有下述研究限制: 1.Ofcom僅蒐集本身受理的申訴數據,而其他組織、供應商所受理的,一概不納入報告書。 2.Ofcom雖力求數據的合理性,但不會檢驗消費者投訴的真實性。 3.當Ofcom倡導某些政策時(例如打及廣告不實),可能會導致某些業者申訴量提高。   在這次報告中,各領域被投訴最多的業者如下:Talk Talk於市話服務被投訴最多,被投訴的理由多數為服務缺失與相關服務爭議。Orange則在固網寬頻、行動通信服務(月租)受到最多申訴,其原因是Orange採取民眾購買寬頻服務後,方得再取得免費網路,以取代原本免費網路的提供。在付費電視上,則是BT Vision受到最多申訴,而內容多為提供服務與處理申訴之缺失。Ofcom期以公佈這些資訊,讓消費者得於每個領域選擇最好的供應商。

何謂「專利蟑螂」( Patent Troll)呢?其之主要特徵及對專利制度以及專利市場之影響為何?

  「專利蟑螂」( Patent Troll)由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。   「專利蟑螂」主要特徵有三;(1)主要係藉由專利取得的方式,向潛在或可能的專利侵權者收取費用;(2)此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;(30此類NPE投機性地等待商品製造者在投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張。   然而,一般對於NPE對專利制度以及專利市場之影響,會以Patent Troll之行為模式作為觀察起點,例如,有論者認為專利蟑螂所從事購買與再行出售專利的行為,可以增進專利交易市場的效率化。同時,該行為不僅讓弱勢的專利創作者享有因其創作所產生的財務收益外,其亦發揮了同於仲介者(dealers)或是市場創造者(market-makers)功能的專利金融性市場 。亦有論者認為,專利蟑螂的行為已經帶來經濟上的危害(economic harm),因其慣於同時向不同公司索取適度的(moderate)專利授權費用。而為了避免陷入風險極高且耗費甚鉅的專利侵權訴訟,被索取專利授權費用之公司皆傾向給付專利蟑螂一定額度的專利授權金,以免除陷入不確定專利訴訟的泥皁。同時,專利蟑螂亦傾向選擇目標公司(target companies)最脆弱的時點,例如:新產品的發表、宣傳費用的投入等,再對其提出專利侵權訴訟,使其被迫必須遵循專利蟑螂的要求來擺脫可能陷入專利侵權訴訟的羈絆。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP