美國總統川普於2019年2月11日簽署一項行政命令,發布「美國AI倡議」(American AI Initiative),旨在確保美國在AI領域的領導地位,川普並說道:「美國在AI領域的領導地位對於維護美國的經濟和國家安全至關重要」。「美國AI倡議」從五大方面來促進美國在AI領域的領導地位,包括:
(一) 投資AI的開發
指示聯邦機構在研發任務及編排預算時,將AI作為優先投資項,確保美國對於AI基礎研發的長遠重視,此外,政府機構並應說明如何將預算用於AI研發開支,以增進對於AI投資的評估。
(二) 數據和資源共享
將聯邦政府中所擁有的統計數據資料、運算模型及運算資源提供給AI研發人員,促進交通和醫療保健等領域的AI發展。
(三) 建立政府標準及監管
白宮科技政策辦公室和美國國家與技術研究院(NIST)制定標準,以提升AI系統的「可靠、穩健、值得信賴、安全、可移轉和具協同性」。透過為不同技術和產業的AI制定使用指南,確保AI的使用安全和適當監管。
(四) 人才培訓
要求各機構為AI進步形成的就業市場變化做好準備,並考慮透過技能培訓課程、獎學金和學徒制度,因應市場人力產生之變化。
(五) 國際參與
與其他國家制定合作策略,協同AI技術的開發,同時確保AI領域之開發符合和不損及美國人的價值觀和利益。
此項倡議雖提及許多面向之發展,但仍然缺少發展細節,亦未提及計畫新資金的投入,因此,許多人對此倡議皆提出質疑。曾協助歐巴馬政府制定AI報告的哈佛大學教授Jason Furman即表示,此「倡議」雖令人鼓舞,但僅是邁出第一步,關鍵的考驗將在於是否能以強而有力的方式確實貫徹執行倡議中的內容,此倡議仍欠缺細節及執行面之部分。
中國大陸之國家互聯網信息辦公室於2025年9月11日發布《國家網絡安全事件報告管理辦法(下稱網安事件管理辦法)》,並將於2025年11月1日施行。網安事件管理辦法規定中國大陸之境內建設、營運網路或透過網路提供服務的網路營運者,於發生網路安全事件時的報告程序。 網安事件管理辦法值得注意或供我國參考有二者:一、與委外廠商之契約以其協力報告義務:該辦法第5條要求網路營運者應當以契約等形式,要求網路安全、系統維運服務提供商(含個人)向網路營運者報告監測發現,並協助網路營運者依辦法報告網路安全事件。簡言之,其透過法律監管網路營運商與委外廠商之間的契約或類似契約,以及報告之協力義務。二、個人資料與網路安全的關聯性:網安事件管理辦法透過《網絡安全事件分級指南》將網路安全事件分為1.特別重大網路安全事件、2.重大網路安全事件、3.較大網路安全事件、4.一般網路安全事件,四種分級。除關鍵基礎設施的中斷運行以外,前三個事件分級將100萬人、1000萬人、1億人以上公民個人資料丢失或被竊取、篡改、假冒,認定為較大網路安全事件以上等級,使大型網路安全事件與個人資料進行連接。換言之,網路安全事件不再僅是資安面的影響,公民個人資料完整性等法律概念逐漸進入資安領域,法律專業的投入將可能是網路安全發展中需審酌的範疇。
歐盟議會通過對RoHS指令修正之提案,奈米銀與長型多壁奈米碳管將可能成為禁止之列歐盟議會之環境、公共健康暨食品安全委員會(以下簡稱委員會)於6月2日以55票贊成,1票反對,2票棄權,通過對電子電機設備有害物質限用指令(RoHS指令)修訂之提案。該提案要求對包括鹵化阻燃劑(Halogenated Flame Retardants)、聚氯乙烯(PVC)以及奈米銀(nanosilver)、長型多壁奈米碳管(long multi-walled carbon nanotubes,MWCNT)等目前未列於有害物質禁用清單之化學物質,評估是否列入清單。 RoHS指令適用於自其他第三國進口以及於歐盟地區所生產之電子電機設備產品,影響層面廣泛,值得注意的是,該修訂提案中就其適用對象改採「開放性適用」(open scope),亦即除有特別明文排除者外,所有電子電機設備產品皆適用此一指令。歐盟議會目前提議排除用於生產再生能源、特定大規模設備與工業工具以及用於生產軍事目的之物質和車輛之電子電機設備。 針對奈米銀和長型多壁奈米碳管兩項奈米物質,委員會於修訂提案將其增列於附件IV當中,將產生對內含上述二種物質且達可探測程度(detectable level)之電子電機設備禁止進入歐盟市場流通之效果。委員會也對內含奈米物質之電子電機設備要求進行標示,製造商亦應向歐盟執委會提供奈米物質之安全數據。惟有論者表示,在歐洲議會目前對於奈米物質之定義尚未明確之前提下,此修訂提案可能導致必須對所有的電子產品進行奈米標示之情況。
WIPO公布《2021年世界智慧財產權指標報告》全球商標註冊申請在疫情影響下仍大幅上升2021年11月8日,世界智慧財產權組織(World Intellectual Property Organization,簡稱WIPO)發布2021年《世界智慧財產權指標報告》(World Intellectual Property Indicators Report,簡稱WIPI)。報告指出全球的商標申請在2020年成長了13.7%、專利成長1.6%、外觀設計成長2%。WIPO執行長表示:「WIPO世界智慧財產權指標報告證實,儘管世界經濟出現數十年來最嚴重的緊縮,但智財權申請——一個強而有力的創新指標——在疫情期間展現出非凡的復原力」。本報告以2020年度,蒐集自世界各地150個官方智財組織、以及WIPO的申請、註冊和延展的統計數據為依據,分析全球智慧財產權活動,範圍涵蓋專利、新型、商標、工業外觀設計、微生物、植物品種保護和地理標誌。 WIPO每年皆會收集和分析官方智財統計數據,發布年度WIPI報告,為政策制定者、商業領袖、投資人、學者和其他欲了解、分析智財生態宏觀趨勢的人提供全球智財資訊。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現