英國商業、能源和產業策略部(Business, Energy and Industrial Strategy,以下簡稱BEIS)於2019年1月提出智慧饋電保證(Smart Export Guarantee,以下簡稱SEG),於此保證下,BEIS將擬定一套不同於躉購制度之政策框架,使小型生產消費者(prosumer)所生產之綠色電力,可於此一政策框架之保障下,與售電業者議約,並將電力售予售電業者,以減輕英國政府預計於今年3月廢除躉購制度所帶來之衝擊。
SEG重要之內容包含:
(1) SEG課予大型售電業(用戶數大於25萬之售電業)收購小型生產消費者所生產之綠色電力之義務。
(2) 小型生產消費者所生產之綠色電力之交易價格及相關契約內容,將交由售電業者與小型生產消費者自行協議。但SEG要求售電業業者對於綠色電力之收購價格不可低於(或等於)零。
(3) 於「負電價」期間,即便小型生產消費者將綠色電力輸入電網,售電業者也不得因此對消費者課徵任何費用。
(4) 小型生產消費者所生產之綠色電力之計算方式,必須以實際測得之產出電力為準,不得以預估之容量為準,亦即,小型生產消費者如裝設智慧電表而可記錄綠色電力生產量時,其生產之綠色電力始有被收購之可能。
(5) 小型生產消費者之再生能源發電設備,不論容量大小,皆應符合躉購制度下之再生能源發電設備之規格標準,但不得超過5MW。
此一政策立意良善,然仍有不少質疑聲音,其中的聲音不乏:(1)BEIS如何確保小型生產消費者所獲取之契約價格,可以真實反映市場之真正應有之電價?(2)SEG於今年3月躉購費率制度廢除後半年間,可能尚未會出現定案之政策框架,其間將會產生立法之真空狀態,其間要如何減緩制度改革對於產業帶來之衝擊?(3)政府所主導之小型消費者端之智慧電表之建置,於英國仍緩如牛步,而智慧電表對於小型消費者而言,如其欲主動裝設,每具將造成300歐元之額外支出,同時每年需額外支出50歐元之維修費用,此一事實對於SEG之推行無疑將造成阻礙。
本文為「經濟部產業技術司科技專案成果」
歐盟「人工智慧法」達成政治協議, 逐步建立AI準則 資訊工業策進會科技法律研究所 2023年12月25日 隨著AI(人工智慧)快速發展,在各領域之應用日益廣泛,已逐漸成為國際政策、規範、立法討論之重點。其中歐盟人工智慧法案(Artificial Intelligence Act, AI Act,以下簡稱AIA法案)係全球首部全面規範人工智慧之法律架構,並於2023年12月9日由歐洲議會及歐盟部長歷史會達成重要政治協議[1],尚待正式批准。 壹、發佈背景 歐洲議會及歐盟部長理事會針對AIA法案已於本年12月9日達成暫時政治協議,尚待正式批准。在法案普遍實施前之過渡期,歐盟執委會將公布人工智慧協定(AI Pact),其將號召來自歐洲及世界各地AI開發者自願承諾履行人工智慧法之關鍵義務。 歐盟人工智慧法係歐盟執委會於2021年4月提出,係全球首項關於人工智慧的全面法律架構,該項新法係歐盟打造可信賴AI之方式,將基於AI未來可證定義(future proof definition),以等同作法直接適用於所有會員國[2]。 貳、內容摘要 AIA法案旨在確保進入並於歐盟使用之AI人工智慧系統是安全及可信賴的,並尊重人類基本權利及歐盟價值觀,在創新及權利義務中取得平衡。對於人工智慧可能對社會造成之危害,遵循以風險為基礎模式(risk-based approach),即風險越高,規則越嚴格,現階段將風險分為:最小風險(Minimal risk)、高風險(High-risk)、無法接受的風險(Unacceptable risk)、特定透明度風險(Specific transparency risk)[3]。與委員會最初建議版本相比,此次臨時協定主要新增內容歸納如下: 臨時協議確立廣泛域外適用之範圍,包含但不限於在歐盟內提供或部署人工智慧系統的企業[4]。但澄清該法案不適用於專門用於軍事或國防目的之系統。同樣,該協定規定不適用於研究和創新目的之人工智慧系統,也不適用於非專業原因之個人AI使用。 臨時協議針對通用AI(General purpose AI)[5]模型,訂定相關規定以確保價值鏈之透明度;針對可能造成系統性風險之強大模型,訂定風險管理與重要事件監管、執行模型評估與對抗性測試等相關義務。這些義務將由執委會與業界、科學社群、民間及其他利害關係人共同制定行為準則(Codes of practices)。 考量到人工智慧系統可用於不同目的之情況,臨時協議針對通用AI系統整合至高風險系統,並就基礎模型部分商定具體規則,其於投放市場之前須遵守特定之透明度義務,另強調對於情緒識別系統有義務在自然人接觸到使用這種系統時通知他們。 臨時協議針對違反禁止之AI應用,罰款金額自3,500萬歐元 或全球年營業額7%(以較高者為準)。針對違反其他義務罰款1,500萬歐元或全球年營業額3%,提供不正確資訊罰 款750萬歐元或全球年營業額1.5%。針對中小及新創企業違反人工智慧法之行政罰款將設定適當之上限。 參、評估分析 在人工智慧系統之快速發展衝擊各國社會、經濟、國力等關鍵因素,如何平衡技術創新帶來之便利及保護人類基本權利係各國立法重點。此次歐盟委員會、理事會和議會共同對其2021年4月提出之AIA法案進行審議並通過臨時協議,係歐洲各國對於現下人工智慧運作之監管進行全面的討論及認可結果,對其他國家未來立法及規範有一定之指引效果。 此次臨時協議主要針對人工智慧定義及適用範圍進行確定定義,確認人工智慧系統產業鏈之提供者及部署者有其相應之權利義務,間接擴大歐盟在人工智慧領域之管轄範圍,並對於人工智慧系統的定義縮小,確保傳統計算過程及單純軟體使用不會被無意中禁止。對於通用人工智慧基礎模型之部分僅初步達成應訂定相關監管,並對基礎模型之提供者應施加更重之執行義務。然由於涉及層面過廣,仍需業界、科學社群、民間及其他利害關係人討論準則之制定。 面對AI人工智慧之快速發展,各國在人工智慧之風險分級、資安監管、法律規範、資訊安全等議題持續被廣泛討論,財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境,將持續觀測各國法令動態,提出我國人工智慧規範之訂定方向及建議。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI,https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai (last visited December 25, 2023). [2]European Commission, Commission welcomes political agreement on Artificial Intelligence Act,https://ec.europa.eu/commission/presscorner/detail/en/ip_23_6473 (last visited December 25, 2023). [3]Artificial intelligence act,P5-7,https://superintelligenz.eu/wp-content/uploads/2023/07/EPRS_BRI2021698792_EN.pdf(last visited December 25, 2023). [4]GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act,https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2 (last visited December 25, 2023). [5]General purpose AI-consisting of models that “are trained on broad data at scale, are designed for generality of output, and can be adapted to a wide range of distinctive tasks”, GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act,https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2(last visited December 25, 2023).
歐洲藥物管理局修正發布「藥品交互作用試驗指針」提升用藥安全與效用歐洲藥物管理局(European Medicines Agency, EMA)今(2012)年7月6日修正發布「藥品交互作用試驗指針」(Guideline on the Investigation of Drug Interactions),EMA表示這是該指針自1997年發布以來最大的修正,內容包括藥廠如何進行新藥與已經流通使用的藥品的潛在交互作用研究,以及新藥與食品的交互作用研究。 「藥品交互作用試驗指針」內容包括用藥建議方案,其乃基於臨床相關交互作用以及調整用藥劑量、監控病人用藥情形之可行性研究為基礎。同時,有關草藥使用的建議方案也包括在內。 EMA表示,新的修正內容使「藥品交互作用試驗指針」與藥品交互作用研究科學之發展現況趨於一致,例如現已能透過少數的精密設計研究,即可預測臨床相關藥品交互作用的結果,以及在了解近年酵素觸發技術(enzyme induction)與藥物載體(drug-transporter)間的交互作用上的科學進展。 藥物交互作用對於用藥的安全與效用極為重要,許多病人,尤其是年長者經常需要同時服用多種藥物,因多種藥物交互作用而產生的負作用(adverse effects)是患者反覆就醫的重要因素之一,且可能減低個別藥物原有的療效。 「藥品交互作用試驗指針」新修正內容將於2013年1月1日生效,全文共計七部分,主要重點在第五部分的藥物動力學(Pharmacokinetic)交互作用研究,內容包括:從研究進行方式即藥品的吸收、分布、代謝、移轉到人體試驗設計、草藥與特殊食品產品、以及產品特性標示事項等都有建議規範,其全文可至EMA官方網站下載。
美國加州通過綠色化學法規由於完善控管機制迄今仍付之闕如,而市面上諸多含有危險化學物質的產品,尚無法立即要求廠商將之下架或提出解決方案,因此引起消費大眾、學界人士及公共健康倡議團體對於消費安全之關切;美國加州為有別於僅針對危險化學物質逐項管理的一般法令,轉而採取整體規範之包裹立法方式,於2008年9月底通過AB 1879與SB 509兩項綠色化學法規,增訂於「健康與安全法典(Health and Safety Code)」,促使商品在設計階段減少毒性物質之接觸。 根據AB 1879法令,由加州環保署(California Environmental Protection Agency) 所管轄之毒性物質控制部門(Department of Toxic Substances Control),現行除具備管理危險材料之儲存、使用與廢棄等法定職責外,另新增計畫如下: (1) 應於2011年1月1日前修改法規,優先針對引發關切的危險化學物質進行生命週期評估,並將評估結果遞交加州環境政策議會(California Environmental Policy Council);此外,毒性物質控制部門應研發潛在替代品,研擬減低或避免化學物質暴露之方法。 (2) 於2009年7月1日前成立綠絲帶科學小組(Green Ribbon Science Panel),用以管理奈米科技、風險分析、公眾健康等十五項與危險性化學物質相關之題材,並為日後政策修訂提供具科學基礎之建議。 (3) 除非另有法規限制,應要求業界呈報管理化學物質之詳細資料,公開作為民眾參考之用;如涉及商業機密,應有程序上之保障。 再者,SB 509法令要求環境健康風險評估辦公室(Office of Environmental Health Hazard Assessment)彙整危險化學物質之特性,並由毒性物質控制部門建立線上資料庫,使民眾便於查詢危險化學物質之相關資訊。 綜上所述,綠色化學法規的訂立,係回應消費大眾對於市售產品之疑慮,因而植基於科學界與現實生活,著重危險化學物質運用及暴露時所為之風險評估,並期於2011年前得以有效掌握化學物質,進而維持勞動環境安全、減少處理毒性廢棄物之成本,達成保護生態與民眾健康之目標。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。