日本農業數據協作平台WAGRI開始自主營運

  「日本農業數據協作平台」(簡稱WAGRI)於2017年內閣府計畫的支持下,委由慶應義塾大學建立,該平台具備農業數據相容、數據共有與數據提供三大機能,日本IT企業NTT、富士通、農機大廠久保田、洋馬等均已加入WAGRI試營使用行列。今(2019)年該平台將移轉予國立研究開發法人農業食品產業技術總合研究機構(下簡稱農研機構),正式開始進入商業模式營運。欲利用WAGRI之機關除須向WAGRI協議會(由農業法人、農機製造商、ICT供應商、學研機構組成,以提出建議改善、普及WAGRI為其立會宗旨)遞交「入會申請書」外,亦須向農研機構遞交「利用規約」、「數據提供利用規約」與「規約同意書兼利用申請書」。

  自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用:

  1. 數據利用(利用WAGRI數據者)、數據利用提供者(利用WAGRI數據且提供數據予WAGRI者)
    • 平台利用月費5萬日圓
    • 若利用有償數據時,須另外支付數據使用費
  2. 數據提供者(提供數據予WAGRI者)
    • 平台利用月費3萬日圓
    • 僅提供無償數據的數據提供機關,原則上不需要繳納平台利用費

  我國為發展智慧農業,智慧農業共通資訊平台有提供免費OPEN DATA介接功能,近年發展智慧農業之農企/機關團體,亦有建立平台作為內部蒐集、利用數據之用,例如弘昌碾米工廠建置水稻健康管理與倉儲資訊服務平臺,未來該類平台均有可能朝商業模式發展。WAGRI建立一套商業模式嘗試自主營運,後續將持續追蹤WAGRI營運狀況作為我國智慧農業平台之運作參考。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
相關附件
你可能會想參加
※ 日本農業數據協作平台WAGRI開始自主營運, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8242&no=55&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
保護、分級與言論(下)

美國聯邦巡迴上訴法院判決美國專利法第271條(f)項不適用於方法專利

  繼美國最高法院於Microsoft Corp. v. AT&T Corp. 做出與專利法治外法權有關的判決後,美國聯邦巡迴上訴法院於2009年8月19日再次做出限縮解釋專利法第271條(f)項於美國境外的效力。   美國專利法第271條(f)項規定未經許可提供或使人提供專利產品之元件,將之由美國供應(“supply”)至美國境外完成組合,亦視為侵害該專利產品之專利權。此項規定為美國國會為防範企業藉由在美國境內製造非專利保護之零組件後再運送之海外進行組合以規避專利侵權責任而制定。之後,在實物案例中,關於第271條(f)項之解釋與適用範圍產生諸多爭議。美國最高法院於其在2007年Microsoft Corp. v. AT&T Corp. 中強調不應擴張解釋第271條(f)項之文字。   於Cardiac Pacemakers Inv. V. St. Jude Medical Inc. 一案中,原告Cardiac Pacemakers控告被告St. Jude Medical所販賣的植入式心臟整流去顫器 (implantable cardioverter defibrillator)之使用會侵犯原告所擁有的一個利用植入式心臟刺激器治療心律不整的方法專利 (a method of heart stimulation using an implantable heart stimulator)。本案的爭點在於被告銷售可實施原告美國專利方法的產品或裝置讓該專利方法於美國境外被實施的行為是否構成第271條(f)項之侵害。美國聯邦巡迴上訴法院推翻其於2005年之判決(Union Carbide Chemicals Plastics Technology Corp. V. Shell Oil Co.),判定專利法第271條(f)項不適用於方法專利。亦即,被告銷售可實施原告美國專利方法的產品至海外的行為不構成第271條(f)項所規定之侵權行為。   此判決對原告Cardiac Pacemakers之衝擊可能較小,因其專利範圍除方法請求項外,亦包含物品請求項,原告還可藉由其物品請求項獲得侵權損害賠償。但此案可能對僅能以方法申請專利的產業如生技藥業(某些診斷及檢驗僅能以方法申請專利)及軟體業造成較大的影響。

政府採購雲端服務新興模式暨資安一體考量之研析

美國國家安全局發布「軟體記憶體安全須知」

  美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下:   1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。   2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。   3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。   搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。

TOP