美國5G科技加速方案(Facilitate America’s Superiority in 5G Technology,簡稱5G FAST Plan)是美國聯邦通訊委員會(Federal Communications Commission,簡稱FCC)為激勵5G投資創新、強化美國5G技術優勢,於2018年9月28日所提出的方案,著重在5G三大發展面向包括:投入更多頻譜進入市場、基礎建設及政策升級、更新監管法規等。其中,美國5G科技加速方案(5G FAST Plan)針對過時法令的現代化,共提出五點更新方向,促進美國人的數位機遇與挑戰。
一、 恢復網路自由:為鼓勵投資和創新,確保網路的開放自由。FCC通過《恢復網路自由命令》,廢除網路中立性。
二、 One Touch Make Ready: FCC更新網路設備安裝到公用電線桿的規則,降低成本並加快5G傳輸部署。
三、 加速智慧財產權轉型:FCC修訂規則促進企業投資5G網路與服務。
四、 商業數據服務:為激勵對現代光纖網路建設的投資,FCC更新高速專用服務規則並提高費率。
五、 供應鏈完整性:禁止購買會威脅美國5G通訊網路及通訊供應鏈完整性的設備與服務。
另一方面,2019年4月12日,FCC主席Ajit Pai前往白宮與總統會談時,再次強調美國必須贏得第五代行動通訊技術競賽,主要有兩個關鍵原因:首先是提升國家競爭力,透過開發並部署5G技術等高薪工作,提升美國經濟水平,進而超越其他競爭國家;再者,發展5G將徹底改變人類的生活方式,從精準農業、智慧交通再到遠端醫療網路,包含農村在內的所有美國民眾,都將受益於這場5G數位革命。 FCC擬定的美國5G科技加速方案(5G FAST Plan),未來發展重點聚焦如下:
一、 釋出5G頻譜以供商業使用:FCC已在2019年1月完成第一次的5G頻譜拍賣,並進行第二次及2019年12月10日第三次的5G頻譜拍賣,開放競標3400兆赫茲,將會是美國歷史上最大的頻譜競標。
二、 簡化5G無線基礎建設審查:5G運作必須依靠小型基地台(Small Cell),FCC透過更新無線通訊基礎設施政策,簡化聯邦與地方對於小型基地台部署審查,加速推動5G無線網路服務覆蓋範圍。
三、 積極鼓勵光纖部署:5G不僅是無線技術,要將5G應用在無人機飛行,還需要更強大的光纖網路傳輸流量。FCC近來致力於鬆綁嚴厲的監管規定,希能逐步增加更多的光纖部署地點。
此外,為鞏固美國在國際的5G競爭實力、部署國家未來的5G基礎建設,FCC預計建立一規模達204億美元的農村數位機會基金,將高速頻寬拓展至美國農村地區多達400萬戶家庭及中小企業,5G技術將為美國帶來更多的經濟機會。FCC表示,從國際條約談判到急需的監管改革,美國政府將以多種方式推展5G願景,提升國家經濟及產業競爭力,改善人民生活並尋求全新的生活模式,為此美國必須贏得第五代行動通訊技術競賽。
本文為「經濟部產業技術司科技專案成果」
澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).
英國正式提出人類組織與胚胎法草案英國可算是對人類胚胎研究最積極的國家之一,目前其胚胎相關研究係根據「人類受精與胚胎學法」(Human Fertilisation and Embryology Act 1990,HF&E Act)及「人類受精與胚胎學規則」(Human Fertilisation and Embryology (Research Purposes) Regulations 2001,Research Purposes Regulations)之規定,並授權「人類受精與胚胎學管理局」(Human Fertilisation and Embryology Authority,HFEA)加以管理。 然面對胚胎研究日益多樣化,英國健康部於今(2007)年5月正式提出「人類組織與胚胎法草案」(Human Tissues and Embryos (Draft)Bill,以下簡稱草案),期能加強現有管理體系並促進相關技術之發展,而草案特別針對體外受精(in vitro fertilization)及胚胎研究之相關規定,作一徹底檢視及翻修。 進一步觀察,胚胎儲存、胚胎篩選、精卵捐贈及主管機關均屬草案規定範圍,另近來於英國國內討論熱烈的人類動物混合胚胎議題,亦於草案中有所規定,草案准許三種類型之人類動物混合胚胎得以被製造,分別是:將動物細胞注入至人類胚胎中、將動物DNA注入至人類胚胎中及將人類細胞核植入動物卵子中等。至於人類精卵與動物精卵之結合,則是被禁止之行為。 草案後續將送交國會專門委員會審查,但由於草案涉及極為爭議的人類動物混合胚胎議題,社會輿論的壓力及保守派議員會產生何種影響,值得持續關注。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
資訊安全與電子商務-談資訊安全通報機制