歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下:

  1. 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。
  2. 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。
  3. 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。
  4. 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。
  5. 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。
  6. 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 
  7. 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

相關附件
※ 歐盟議會發布《可信賴人工智慧倫理準則》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8248&no=57&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
歐洲創新計分板(European Innovation Scoreboard)

  歐洲創新計分板(European Innovation Scoreboard, EIS)為針對歐盟成員國以及其他歐洲國家的研究與創新績效、創新體系等進行的評比報告,由歐盟執委會(European Commission, EC)每年發布,協助了解各國創新力態樣與市場競爭優勢。   EIS以綜合創新指數(Summary Innovation Index)作為整體評估標準,區分為四大類指標、10個創新構面,並細分為27個評估子標。四大類指標及相關架構如下: 創新環境指標:其中包含3種創新構面分別為人力資源、國家研究系統和友善投資環境; 投資指標:包含財務支援與企業投資創新構面; 新創活動指標:其創新構面包含創新者、連結度(linkage)和智財; 影響力指標:囊括就業影響力和銷售市場影響力兩種構面。   2019年6月發布歐洲創新計分板報告,歐盟創新發展連續四年均有進步。報告將歐盟會員國創新表現分為四組,分別為:1.創新領導者:包含丹麥、芬蘭、挪威等國;2. 優秀創新者:包含奧地利、比利時、德國等;3.中等創新者:包含希臘、匈牙利、義大利等;最後一組4.適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞等。該報告亦個別在特定領域上進行排名,例如在創新研究體系領域,盧森堡和丹麥表現最好,友善創新環境則以丹麥及芬蘭為最優,企業投資由德國和芬蘭領先,智財領域應用上則以中等創新組的馬爾他居冠。

美國國家公路交通安全管理局公布車輛網路安全最佳實踐,呼籲業界遵循

  美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2022年9月9日公布2022年最新版本之當代車輛網路安全最佳實踐(Cybersecurity Best Practices for the Safety of Modern Vehicles),強化政府對先進聯網車輛網路安全之把關。   文件將網路安全實踐項目區分為「一般網路安全最佳實踐」及「車輛技術網路安全最佳實踐」兩塊,前者主要為公司整體組織網路安全文化與監管機制之建立;後者則偏重於技術性的建議內涵。   「一般網路安全最佳實踐」共有45項要點,核心概念為:公司應訂定明確的網路安全評估程序,由領導階層負責相關監督責任,定期執行網路安全之風險評估及第三方公正稽核,並對其所發現之風險弱點採取保護措施並持續監控,同時應妥善保存所有網路安全相關之紀錄文件,並鼓勵與車輛同業聯盟彼此分享學習經驗。對於組織成員應適當提供網路安全教育訓練。於產品設計時,應將產品使用者、售後服務維修商,以及可能的外接式電子設備所帶來之風險一併納入安全設計考量。   「車輛技術網路安全最佳實踐」共有25項,核心理念為:對於產品開發人員,應建立存取權限管理,避免有心人士濫用權限。產品所使用的加密技術應隨時更新,若車輛具備診斷功能,應慎防遭到不當利用,且應防止車輛所搭載之感測器遭到惡意干擾或改動,感測器所收集到之資料則應能免於網路攻擊或竊取。應特別注意無線網路設備、空中軟體更新(Over-the-air, OTA)以及公司作業軟體所產生之風險漏洞。   本文件屬於自願性質,無法律強制力。但NHTSA期望在現有的車輛產業網路安全標準上,例如國際標準組織與國際汽車工程師協會(International Standards Organization, ISO/SAE International, SAE)先前所訂定的車輛網路安全標準ISO/SAE 21434的基礎前提下,進一步提出政府對車輛網路安全要求的努力。

加拿大參議院交通與通訊委員會提出自駕與聯網車輛政策發展報告與建議

  2018年1月加拿大參議院交通與通訊委員會(Standing Senate Committee on Transport and Communications)向加拿大交通部提出「駕駛改革:技術與自駕車的未來(Driving Change : Technology And The Future Of The Automated Vehicle)」報告。   報告指出加拿大面臨自駕車可能遭遇之挑戰,並列出提供交通部發展自駕車策略之政策建議。   其中包含:建議加拿大應成立跨部會單位以整合全國自駕車政策、並整合各地方政府與傳統領域政府透過發展地區模型策略;交通部並應與美國合作,來確保自駕車輛於兩國間運行無障礙;交通部應發展自駕聯網車輛設計的車輛安全指南,指南中應指明製造商於發展、測試與布建自駕車的車輛應有的設計需求,該指南並應持續隨科技發展而更新。   加拿大政府並應立法授權隱私委員會主動調查與促使製造者遵循「個人資訊保護與電子文件法(Personal Information Protection and Electronic Documents Act)」的權力,並應持續評估聯網車輛的隱私相關規範之需求。   並應整合利益關係人發展聯網車輛管制框架,特別應包括隱私保護;並應監督自駕與聯網車輛技術競爭之影響,以確保車輛出租公司與其他的延伸市場可持續取得相關營業所需資訊;並應注重加拿大自駕車之測試與發展等對於就業之影響等。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP