歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下:

  1. 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。
  2. 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。
  3. 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。
  4. 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。
  5. 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。
  6. 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 
  7. 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

相關附件
※ 歐盟議會發布《可信賴人工智慧倫理準則》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8248&no=57&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
美韓兩國反托拉斯法主管機關共同簽署反托拉斯備忘錄

  為了促進美國、韓國兩國之間的反托拉斯法主管機關合作。今年9月8日,美國司法部(Department of Justice,DOJ)、美國聯邦貿易委員會(Federal Trade Commission,FTC)與韓國公平貿易委員會(Korea Fair Trade Commission,KFTC)於華盛頓特區簽訂一反托拉斯備忘錄(memorandum of understanding,MOU);該備忘錄係由美國司法部反托拉斯署助理檢察總長Bill Baer與聯邦貿易委員會女主席Edith Ramirez及韓國公平交易委員會Jeong Jae-chan共同簽署。本備忘錄於簽署後立即生效。   反托拉斯署助理檢察總長Bill Baer表示:「具有坦誠和建設性對話之執法合作對於美國、韓國及全世界各地之競爭市場維持皆極其重要。本備忘錄標示了一直以來美國與韓國公平貿易委員會之間的合作關係;並展現出我們在未來日子中,欲持續加強該合作關係的企圖心。」該備忘錄的重點包含: 反托拉斯合作重要性的相互承認,包括在進行共同執法時,互相協調的重要性。 闡明了美國反托拉斯執法機關與韓國公平貿易委員會之間溝通的重要性。 承諾保護另一方所提供訊息之機密性;並承諾在法規不允許的情況下,禁止分享資訊。   自韓國1981年通過其反托拉斯法後,美國反托拉斯主管機關和韓國公平貿易委員會之合作關係越來越緊密;其中包括政策意見的交換,並視情況進行合作開展調查。本次所簽訂之備忘錄旨在進一步推動這些合作關係。

法國法院裁定亞馬遜網路書店(Amazom.com)停止書籍免運費之活動

  法國書商聯盟(Syndicat de la librairie française),於2004年一月對美國知名電子商務業者-「亞馬遜網路書店」(Amazon.com)所提出之違法書籍折扣及低於售價的訴訟,法國法院於今年十二月初做出裁定。該法院命令Amazon.com應於收到判決十天內對於所售出之書籍開始收取運費,否則必須受到每天一千歐元的罰款至該公司停止該不收取運費之行為止。同時該判決亦命令,Amazon.com應支付給原告書商聯盟十萬歐元的損害賠償金。   法國政府對於零售價格之法律規定十分嚴格,尤其對於書籍的零售。在法國,商家利用「價格犧牲」(Loss-Leaders)的促銷方式或其他低於產品價格的方式吸引顧客係為違法之行為;因此該國法律規定,關於書籍的零售商依法必須不得以低於出版商建議售價百分之五的價格出售書籍。Amazon.com所提供之折扣已經超過法國法律所規定之上限,故法國書商聯盟為保障其會員之權益,特別對該網站提出訴訟,以保護獨立小型書店之營運。Amazon.com尚未對上開判決發表正式的官方意見。

美國專利商標局發布「發明AI」分析報告,由美國專利申請趨勢分析AI技術普及情形

  美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。   報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。   USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。

新加坡將推動國家電子醫療紀錄

  新加坡自今年(2018年)1月5日起推動「醫療服務法案(Healthcare Services Bill)」之制定,該法案預計取代現有「私人醫院和醫療診所法(Private Hospitals and Medical Clinics Act)」。其中「國家電子醫療紀錄(National Electronic Health Record),下稱NEHR」將整合並改善國營醫療機構及非國營醫療機構兩種醫療紀錄無法互通之情形,而行動醫療及遠端醫療亦納入之。   根據目前之諮詢狀況(已於今年2月15日結束),提案單位衛生部(Ministry of Health)表示,由於現代醫療技術已趨近複雜,若能整合各醫療單位之就診紀錄,將可大幅提升醫療效率,特別是在急診的狀況下,整合過的單一病歷將可降低評估所需的時間。   而對於病患之個資方面保護,該部表示,首先,NEHR並不會蒐集全部患者的醫療參數,只有患者之核心醫療參數才會上傳至NEHR之資料庫內,此外亦不提供非醫療目的外之使用(例如就業及保險評估)。而為降低非法使用之機率,非法使用亦將處罰之。   另外為尊重病患個人之資訊自決權,NEHR亦提供了病患選擇退出機制(opt-out)以作為個資保護的最後屏障。然而該退出機制仍不同於一般的退出機制(即退出後不得蒐集、處理及利用),該機制僅禁止各醫療機構讀取該病患之醫療紀錄,但是各該機構依NHER之架構仍應將每次就診紀錄上傳之,此一設計係避免緊急情況下或病患同意讀取電子病歷時,卻無醫療紀錄可供查詢之窘境。

TOP